

Advanced Card Systems Ltd.
Card & Reader Technologies

ACM1552D-C7

Reference Manual V1.00

Table of Contents

1.0. Introduction	4
2.0. Features	5
3.0. Hardware Design.....	6
3.1. USB Interface	6
3.1.1. Communication Parameters.....	6
3.1.2. Endpoints.....	6
3.2. Serial Interface	6
3.2.1. Communication Parameters.....	6
3.2.2. Serial Protocol	6
3.2.3. CCID-like Commands	8
3.2.4. Serial Interface Commands Example.....	15
3.3. User Interface	17
3.3.1. Buzzer and LED	17
4.0. Software Design	18
4.1. PCSC API.....	18
4.1.1. SCardEstablishContext	18
4.1.2. SCardListReaders	19
4.1.3. SCardConnect	20
4.1.4. SCardControl.....	21
4.1.5. SCardTransmit	23
4.1.6. SCardDisconnect.....	25
4.1.7. APDU Flow	26
4.1.8. Escape Command Flow	27
4.2. Contact Smart Card Protocol	27
4.2.1. ACOS6-SAM Commands.....	27
4.3. Contactless Smart Card Protocol	39
4.3.1. ATR Generation.....	39
4.3.2. APDU, Pseudo APDU and Card Native Command	41
4.3.3. PCSC Pseudo APDU (with Proprietary Extension) for PICC	41
4.3.4. Pass Through Command.....	50
4.3.5. APDU Commands for PCSC 2.0 Part 3 (Version 2.02 or above)	54
4.3.6. Proprietary Pseudo APDU for PICC	64
4.3.7. Accessing PCSC-Compliant tags (ISO14443-4).....	67
4.3.9. Supported PICC ATR	69
5.0. Escape Command	72
5.1. Escape Command for PICC	72
5.1.1. RF Control [E0 00 00 25 01 ...]	72
5.1.2. Get PCD/PICC Status [E0 00 00 25 00].....	73
5.1.3. Get Polling/ATR Option [E0 00 00 23 00]	73
5.1.4. Set Polling/ATR Option [E0 00 00 23 01 ...]	73
5.1.5. Get PICC Polling Type [E0 00 01 20 00].....	74
5.1.6. Set PICC Polling Type [E0 00 01 20 02 ...]	75
5.1.7. Get Auto PPS [E0 00 00 24 00].....	76
5.1.8. Set Auto PPS [E0 00 00 24 01 ...]	76
5.1.9. Read PICC Type [E0 00 00 35 00].....	77
5.1.10. Get RF Power Setting [E0 00 00 50 00]	78
5.1.11. Set RF Power Setting [E0 00 00 50 01 ...]	78
5.1.12. Get Selective Suspend Setting [E0 00 00 E5 00]	79
5.1.13. Set Selective Suspend Setting [E0 00 00 E5 01 ...]	79
5.1.14. Escape Command for PICC – HID Keyboard (USB Interface Only)	80

5.1.15.	Escape Command for PICC – Card Emulation	84
5.1.16.	Escape Command for PICC – Discovery Mode	90
5.2.	Escape Command for Peripheral Control and Other.....	91
5.2.1.	Get Firmware Version [E0 00 00 18 ...]	91
5.2.2.	Get Serial Number [E0 00 00 33 00]	91
5.2.3.	Set S/N in USB Descriptor [E0 00 00 F0].....	91
5.2.4.	Set Buzzer Control - Single Time [E0 00 00 28 01 ...]	92
5.2.5.	Set Buzzer Control - Repeatable [E0 00 00 28 03 ...]	92
5.2.6.	Get LED Status [E0 00 00 29 00].....	93
5.2.7.	Set LED Control [E0 00 00 29 01 ...]	93
5.2.8.	Get UI Behaviour [E0 00 00 21 00]	94
5.2.9.	Set UI Behaviour [E0 00 00 21 01 ...]	94
5.2.10.	Set Serial Communication Mode	95
Appendix A.	NDEF Message.....	96
Appendix B.	Slot Status and Slot Error	97

List of Figures

Figure 1 : ACM1552D-C7 APDU Flow	26
Figure 2 : ACM1552D-C7 Escape Command Flow	27
Figure 3 : ACM1552D-C7 Transparent Session Flow.....	54

List of Tables

Table 1 : USB Interface Wiring	6
Table 2 : RS232 Interface Wiring	6
Table 3 : Buzzer and LED Indicator.....	17
Table 4 : MIFARE Classic 1K Memory Map	44
Table 5 : MIFARE Classic 4K Memory Map	45
Table 6 : MIFARE Ultralight Memory Map	46
Table 7 : NFC Forum Type 2 Tag Memory Map (2000 bytes)	85
Table 8 : FeliCa Memory Map (160 bytes)	85
Table 9 : Slot Status register	97
Table 10 : Slot error register when bmCommandStatus = 1	98

1.0. Introduction

The ACM1552D-C7 Serial Contactless Reader Module with SAM Slot is designed with 13.56 MHz contactless technology, supporting ISO 14443 Parts 1-4 Type A and B cards, MIFARE Classic® series, ISO 15693, and ISO 18092 standards. It features an RS232 interface and offers a card reading distance of up to 70 mm.

This Plug and Play device includes an ISO 7816-compliant SAM slot for high-level security in contactless transactions and requires no driver installation, ensuring easy integration into embedded systems. It achieves high-speed communication at up to 848 Kbps for ISO 14443 and 26 Kbps for ISO 15693.

The ACM1552D-C7 supports card reader/writer mode and card emulation mode, making it a versatile, cost-effective choice for applications like vending machine payment systems, kiosks, and gaming machines. It also features an integrated antenna, optional serial cable, firmware upgradeability, and extended APDU support.

2.0. Features

- Serial Interface: Baud Rate = 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps(default), 230.4 kbps
- USB Full Speed Interface
- CCID-compliant
- USB interface for power supply
- CCID-like frame format for serial interface
- Smart Card Reader:
 - Contactless Interface:
 - Read/Write speed of up to 26kbps ISO 15693 & 848 kbps (ISO 14443) card types
 - Built-in antenna for contactless tag access, with card reading distance of up to 70 mm (depending on tag type)
 - Supports ISO 15693 card types
 - Supports ISO 14443 Part 4 Type A and B cards and MIFARE series
 - Built-in anti-collision feature
 - Supports extended APDU (max. 64 KB)
 - SAM Interface:
 - One SAM Slot
 - Supports ISO 7816 Class A SAM cards
- Application Programming Interface:
 - Supports PC/SC
 - Supports CT-API (through wrapper on top of PC/SC)
- Built-in Peripherals:
 - Two user-controllable LEDs (Blue and Green)
 - User-controllable buzzer
- Firmware Upgradability
- Supports Android™ 3.1 and later¹
- Compliant with the following standards:
 - ISO 14443
 - ISO 15693
 - ISO 7816
 - PC/SC
 - CCID
 - CE
 - UKCA
 - FCC
 - RoHS
 - REACH
 - Microsoft® WHQL

¹ Uses an ACS-defined Android Library

3.0. Hardware Design

3.1. USB Interface

The ACM1552D-C7 connects to a computer through USB following the USB standard.

3.1.1. Communication Parameters

The ACM1552D-C7 connects to a computer through USB as specified in the USB Specification 2.0. The ACM1552D-C7 works in full-speed mode, i.e. 12 Mbps.

Pin	Signal	Function
1	V _{BUS}	+5 V power supply for the reader
2	D-	Differential signal transmits data between ACM1552D-C7 and PC
3	D+	Differential signal transmits data between ACM1552D-C7 and PC
4	GND	Reference voltage level for power supply

Table 1: USB Interface Wiring

Note: The device driver should be installed for the ACM1552D-C7 to function properly through USB interface.

3.1.2. Endpoints

The ACM1552D-C7 uses the following endpoints to communicate with the host computer:

Control Endpoint – For setup and control purposes.

Bulk-OUT – For commands to be sent from the host to the ACM1552D-C7 (data packet size is 64 bytes).

Bulk-IN – For response to be sent from the ACM1552D-C7 to the host (data packet size is 64 bytes).

Interrupt-IN – For card status message to be sent from the ACM1552D-C7 to the host (data packet size is 8 bytes).

3.2. Serial Interface

The ACM1552D-C7 is connected to a computer through a Serial Interface (RS-232).

3.2.1. Communication Parameters

The ACM1552D-C7 is connected to a host through serial interface (RS-232), Supported Baud Rate: 9,600 bps, 19,200 bps, 38,400 bps, 57,600 bps, 115,200 bps(default) and 230,400 bps..

Pin	Signal	Function
1	VCC	+5 V power supply for the reader
2	TXD	The signal from the host to the reader
3	RXD	The signal from the reader to the host
4	GND	Reference voltage level for power supply

Table 2: RS232 Interface Wiring

3.2.2. Serial Protocol

ACM1552D-C7 shall interface with the host with serial connection. CCID-like format is used for communication.

Command Format

STX (02h)	Bulk-OUT Header	APDU Command or Parameters	Checksum	ETX (03h)
1 byte	10 Bytes	M Bytes (if applicable)	1 byte	1 byte

Where:

STX – Start of Text, tells the reader start to receive the command, must equal to 0x02h

ETX – End of Text, tells the reader the command ended, must equal to 0x03h

Bulk-OUT Header – 10bytes CCID-liked Header

APDU Command or Parameter – APDU command or parameter for accessing reader and card

Checksum – error checking, equal to XOR {Bulk-OUT Header, APDU Command or Parameters}

After ACM1552D receives the command, ACM1552D will first response the status frame to tell the host the command status.

The Status Frame Format as below:

STX (02h)	Status	Checksum	ETX (03h)
1 byte	1 byte	1 byte	1 byte

Note: Checksum = Status

There are several cases that may occur:

Case1 ACK Frame = {02 00 00 03h}

Inform the HOST that the frame is correctly received. The HOST has to wait for the response of the command. The ACM1552D-C7 will not receive any more frames while the command is being processed.

Case2 Checksum Error Frame = {02 FF FF 03h}

The received data checksum is incorrect.

Case3 Length Error Frame = {02 FE FE 03h}

The data length is greater than 275 bytes.

Case4 ETX Error Frame = {02 FD FD 03h}

The last byte is not equal to ETX “03h”.

Case5 Time out Error Frame = {02 99 99 03h}

No data receive for a long time.

NAK Frame = {02 00 00 00 00 00 00 00 00 00 00 00 00 00 03h} // 11 zeros

Used by the HOST to get the last response or card insertion/ removal event messages.

If the frame is correctly received (e.g., ACK Frame received by Host), the response frame will be sent by ACM1552D-C7 followed.

The Response Frame Format as below:

STX (02h)	Bulk-IN Header	APDU Response or abData	Checksum	ETX (03h)
1 byte	10 Bytes	N Bytes (If applicable)	1 byte	1 byte

Where:

STX – Start of Text, tells the host to receive the response, must be equal to 0x02h

ETX – End of Text, tells the host the response ended, must be equal to 0x03h

Bulk-IN Header – 10 bytes CCID-like header, please refer to **Section 3.2.3 – CCID-like Commands**

APDU Response or abData – APDU response or data from accessed command

Checksum – error checking, equal to XOR {Bulk-OUT Header, APDU Response or abData}

3.2.3. CCID-like Commands

3.2.3.1. Bulk-OUT Messages

ACM1552D-C7 shall follow the CCID Bulk-OUT Messages as specified in CCID Section 6.1. In addition, this specification defines some extended commands for operating additional features. This section lists the CCID Bulk-OUT Messages to be supported by ACM1552D-C7.

3.2.3.1.1. PC_to_RDR_IccPowerOn

Activate the card slot and return ATR from the card.

Offset	Field	Size	Value	Description
0	bMessageType	1	62h	-
1	dwLength	4	00000000h	Size of extra bytes of this message
2	bSlot	1	00-01h	Identifies the slot number for this command 00h: PICC 01h: SAM
5	bSeq	1	00-FFh	Sequence number for command
6	bPowerSelect	1	00h-02h	Voltage that is applied to the ICC 00h – Automatic Voltage Selection 01h – 5 volts 02h – 3 volts
7	abRFU	2	0000h	Reserved for future use

The response to this message is the RDR_to_PC_DataBlock message and the data returned is the Answer To Reset (ATR) data.

3.2.3.1.2. PC_to_RDR_IccPowerOff

Deactivate the card slot.

Offset	Field	Size	Value	Description
0	bMessageType	1	63h	-
1	dwLength	4	00000000h	Size of extra bytes of this message
5	bSlot	1	00-01h	Identifies the slot number for this command 00h: PICC 01h: SAM
6	bSeq	1	00-FFh	Sequence number for command
7	abRFU	3	000000h	Reserved for future use

The response to this message is the RDR_to_PC_SlotStatus message.

3.2.3.1.3. PC_to_RDR_GetSlotStatus

Get current status of the slot.

Offset	Field	Size	Value	Description
0	bMessageType	1	65h	-
1	dwLength	4	00000000h	Size of extra bytes of this message
5	bSlot	1	00-01h	Identifies the slot number for this command 00h: PICC 01h: SAM
6	bSeq	1	00-FFh	Sequence number for command
7	abRFU	3	000000h	Reserved for future use

The response to this message is the RDR_to_PC_SlotStatus message.

3.2.3.1.4. PC_to_RDR_XfrBlock

Transfer data block to the ICC.

Offset	Field	Size	Value	Description
0	bMessageType	1	6Fh	-
1	dwLength	4	00000000-000001E7h	Size of abData field of this message Fields are stored in little endian.
5	bSlot	1	00-01h	Identifies the slot number for this command 00h: PICC 01h: SAM
6	bSeq	1	00-FFh	Sequence number for command

Offset	Field	Size	Value	Description
7	bBWI	1	00-FFh	Used to extend the CCIDs Block Waiting Timeout for this current transfer. The CCID will timeout the block after “this number multiplied by the Block Waiting Time” has expired.
8	wLevelParameter	2	-	Fields are stored in little endian. TPDU level, RFU, = 0000h Short APDU level, RFU, = 0000h Extended APDU level: lindicates if APDU begins or ends in this command: 0000h the command APDU begins and ends with this command, 0001h the command APDU begins with this command, and continue in the next PC_to_RDR_XfrBlock, 0002h this abData field continues a command APDU and ends the APDU command, 0003h the abData field continues a command APDU and another block is to follow, 0010h empty abData field, continuation of response APDU is expected in the next RDR_to_PC_DataBlock.
10	abData	Byte array	-	Data block sent to the CCID. Data is sent “as is” to the ICC (TPDU exchange level)

The response to this message is the RDR_to_PC_DataBlock message.

3.2.3.1.5. PC_to_RDR_Escape

Access extended features.

Offset	Field	Size	Value	Description
0	bMessageType	1	6Bh	-
1	dwLength	4	00000000-000000FFh	Size of abData field of this message. Fields are stored in little endian.
5	bSlot	1	00h-01h	Identifies the slot number for this command 00h: PICC

				01h: SAM
6	bSeq	1	00-FFh	Sequence number for command
7	abRFU	3	000000h	Reserved for Future Use
10	abData	Byte array	-	data block sent to the CCID

The response to this command message is the RDR_to_PC_Escape response message

3.2.3.1.6. PC_to_RDR_SetParameters

Set slot parameters.

Offset	Field	Size	Value	Description
0	bMessageType	1	61h	-
1	dwLength	4	00000005h or 00000007h	Size of abProtocolDataStructure field of this message. Fields are stored in little endian.
5	bSlot	1	00-01h	Identifies the slot number for this command 00h: PICC 01h: SAM
6	bSeq	1	00-FFh	Sequence number for command
7	bProtocolNum	1	00-01h	Specifies what protocol data structure follows. 00h = Structure for protocol T=0 01h = Structure for protocol T=1 The following values are reserved for future use. 80h = Structure for 2-wire protocol 81h = Structure for 3-wire protocol 82h = Structure for I2C protocol
8	abRFU	2	0000h	Reserved for future use
10	abProtocolDataStructure	Byte array	-	Protocol Data Structure

Protocol Data Structure for Protocol T=0 (dwLength=00000005h)

Offset	Field	Size	Value	Description
10	bmIndexDindex	1		B7-4 – FI – Index into the table 7 in ISO/IEC 7816-3:1997 selecting a clock rate conversion factor B3-0 – DI - Index into the table 8 in ISO/IEC 7816-3:1997 selecting a baud rate conversion factor
11	bmTCCKST0	1	00h, 02h	B0 – 0b, B7-2 – 000000b

				B1 – Convention used (b1=0 for direct, b1=1 for inverse) Note: The CCID ignores this bit.
12	bGuardTimeT0	1	00-FFh	Extra Guardtime between two characters. Add 0 to 254 etu to the normal guardtime of 12etu. FFh is the same as 00h.
13	bWaitingIntegerT0	1	00-FFh	WI for T=0 used to define WWT
14	bClockStop	1	00-03h	ICC Clock Stop Support 00h = Stopping the Clock is not allowed 01h = Stop with Clock signal Low 02h = Stop with Clock signal High 03h = Stop with Clock either High or Low

Protocol Data Structure for Protocol T=1 (dwLength=00000007h)

Offset	Field	Size	Value	Description
10	bmFindexDindex	1		B7-4 – FI – Index into the table 7 in ISO/IEC 7816-3:1997 selecting a clock rate conversion factor B3-0 – DI - Index into the table 8 in ISO/IEC 7816-3:1997 selecting a baud rate conversion factor
11	BmTCCKST1	1	10h, 11h, 12h, 13h	B7-2 – 000100b B0 – Checksum type (b0=0 for LRC, b0=1 for CRC B1 – Convention used (b1=0 for direct, b1=1 for inverse) Note: The CCID ignores this bit.
12	BGuardTimeT1	1	00-FFh	Extra Guardtime (0 to 254 etu between two characters). If value is FFh, then guardtime is reduced by 1 etu.
13	BwaitingIntegerT1	1	00-9Fh	B7-4 = BWI values 0-9 valid B3-0 = CWI values 0-Fh valid
14	bClockStop	1	00-03h	ICC Clock Stop Support 00h = Stopping the Clock is not allowed 01h = Stop with Clock signal Low 02h = Stop with Clock signal High 03h = Stop with Clock either High or Low
15	bIFSC	1	00-FEh	Size of negotiated IFSC
16	bNadValue	1	00h	Only support NAD = 00h

The response to this message is the RDR_to_PC_Parameters message

3.2.3.2. Bulk-IN Messages

The Bulk-IN messages are used in response to the Bulk-OUT messages. ACM1552D-C7 shall follow the CCID Bulk-IN Messages as specified in CCID section 6.2. This section lists the CCID Bulk-IN Messages to be supported by ACM1552D-C7.

3.2.3.2.1. RDR_to_PC_DataBlock

This message is sent by ACM1552D-C7 in response to PC_to_RDR_IccPowerOn and PC_to_RDR_XfrBlock messages.

Offset	Field	Size	Value	Description
0	bMessageType	1	80h	Indicates that a data block is being sent from the CCID
1	dwLength	4	00000000-000001E7h	Size of abData field of this message. Fields are stored in little endian.
5	bSlot	1	-	Same value as in Bulk-OUT message
6	bSeq	1	-	Same value as in Bulk-OUT message
7	bStatus	1	-	Slot status register as defined in <u>Appendix B</u>
8	bError	1	-	Slot error register as defined in <u>Appendix B</u>
9	bChainParameter	1	-	Short APDU level, RFU = 00h Extended APDU level: 00h – the response APDU begins and ends in this command. 01h – the response APDU begins with this command, and is to continue. 02h – this abData field continues the response APDU and ends the response APDU. 03h – this abData field continues the response APDU and another block is to follow. 10h – empty abData field, continuation of command APDU is expected in the next PC_to_RDR_XfrBlock command.
10	abData	Byte array	-	This field contains the data returned by the CCID

3.2.3.2.2. RDR_to_PC_SlotStatus

This message is sent by ACM1552D-C7 in response to PC_to_RDR_IccPowerOff, and PC_to_RDR_GetSlotStatus.

Offset	Field	Size	Value	Description
0	bMessageType	1	81h	-

Offset	Field	Size	Value	Description
1	dwLength	4	00000000h	Size of extra bytes of this message
5	bSlot	1	-	Same value as in Bulk-OUT message
6	bSeq	1	-	Same value as in Bulk-OUT message
7	bStatus	1	-	Slot status register as defined in Appendix B
8	bError	1	-	Slot error register as defined in Appendix B
9	bClockStatus	1	00-03h	Value = 00h Clock running 01h Clock stopped in state L 02h Clock stopped in state H 03h Clock stopped in an unknown state All other values are RFU.

3.2.3.2.3. RDR_to_PC_Parameters

This message is sent by ACM1552D-C7 in response to PC_to_RDR_GetParameters, PC_to_RDR_ResetParameters and PC_to_RDR_SetParameters messages.

Offset	Field	Size	Value	Description
0	bMessageType	1	82h	-
1	dwLength	4	00000005h or 00000007h	Size of abProtocolDataStructure field of this message. Fields are stored in little endian.
5	bSlot	1	-	Same value as in Bulk-OUT message
6	bSeq	1	-	Same value as in Bulk-OUT message
7	bStatus	1	-	Slot status register as defined in Appendix B
8	bError	1	-	Slot error register as defined in Appendix B
9	bProtocolNum	1	00-01h	Specifies what protocol data structure follows. 00h = Structure for protocol T=0 01h = Structure for protocol T=1 The following values are reserved for future use. 80h = Structure for 2-wire protocol 81h = Structure for 3-wire protocol 82h = Structure for I2C protocol

10	abProtocolDataStructure	Byte array	-	Protocol Data Structure as summarized in 3.2.3.1.6 .
----	-------------------------	------------	---	--

3.2.3.2.4. RDR_to_PC_Escape

This message is sent by ACM1552D-C7 in response to PC_to_RDR_Escape messages

Offset	Field	Size	Value	Description
0	bMessageType	1	83h	-
1	dwLength	4	00000000-000000FFh	Size of abData field of this message. Fields are stored in little endian.
5	bSlot	1	-	Same value as in Bulk-OUT message
6	bSeq	1	-	Same value as in Bulk-OUT message
7	bStatus	1	-	Slot status register as defined in Appendix B
8	bError	1	-	Slot error register as defined in Appendix B
9	bChainParameter	1	00h	RFU
10	abData	Byte array	-	Data send from CCID

3.2.4. Serial Interface Commands Example

3.2.4.1. Send CCID Command

Power on PICC card

- Tx
02 62 00 00 00 00 00 00 00 00 00 62 03h

Where:

02h: Start of Text

62 00 00 00 00 00 00 00 00 00h: 10 bytes CCID PC_to_RDR_IccPowerOn header

62h: checksum of {62 00 00 00 00 00 00 00 00 00h }

03h: End of Text

- Rx
02 00 00 00 03 02 80 14 00 00 00 00 00 00 00 3B 8F 80 01 80 4F 0C A0 00 00 03 06 0B
00 13 00 00 00 00 70 AF 03h

Where:

02 00 00 00 03h: ACK frame

02h: Start of Text

80 14 00 00 00 00 00 00 00 00h: 10 bytes CCID RDR_to_PC_DataBlock header

3B 8F 80 01 80 4F 0C A0 00 00 03 06 0B 00 13 00 00 00 00 70h: ATR of the PICC card

AFh: checksum of {80 14 00 00 00 00 00 00 00 00 3B 8F 80 01 80 4F 0C A0 00 00 03 06 0B 00 13 00 00 00 70h }

03h: End of Text

3.2.4.2. Send APDU

Send Get Data APDU

- Tx

02 6F 05 00 00 00 00 00 00 00 00 FF CA 00 00 00 5F 03h

Where:

02h: Start of Text

6F 05 00 00 00 00 00 00 00 00 00h: 10 bytes CCID PC_to_RDR_XfrBlock header

FF CA 00 00 00h: Get Data APDU

5Fh: checksum of {6F 05 00 00 00 00 00 00 00 00 FF CA 00 00 00h }

03h: End of Text

- Rx

02 00 00 00 03 02 80 0A 00 00 00 00 00 00 00 00 E2 D0 85 02 00 51 02 E0 90 00 1C 03h

Where:

02 00 00 00 03h: ACK frame

02h: Start of Text

80 0A 00 00 00 00 00 00 00 00h: 10 bytes CCID RDR_to_PC_DataBlock header

E2 D0 85 02 00 51 02 E0 90 00h: APDU response

1Ch: checksum of {80 0A 00 00 00 00 00 00 00 00 E2 D0 85 02 00 51 02 E0 90 00h }

03h: End of Text

3.2.4.3. Send Escape Command

Send Get Firmware Version escape command

- Tx

02 6B 05 00 00 00 00 00 00 00 E0 00 00 18 00 96 03h

Where:

02h: Start of Text

6B 05 00 00 00 00 00 00 00 00h: 10 bytes CCID PC_to_RDR_Escape header

E0 00 00 18 00h: Get Firmware Version escape command

96h: checksum of {6B 05 00 00 00 00 00 00 00 00 E0 00 00 18 00h }

03h: End of Text

- Rx

02 00 00 00 03 02 83 19 00 00 00 00 00 00 00 E1 00 00 00 14 41 43 52 31 35 35 32 20 44
20 46 57 20 37 2E 30 30 2E 30 30 7E 03h

Where:

02 00 00 00 03h: ACK frame

02h: Start of Text

83 19 00 00 00 00 00 00 00 00h: 10 bytes CCID RDR_to_PC_Escape header

E1 00 00 00 14 41 43 52 31 35 35 32 20 44 20 46 57 20 37 2E 30 30 2E 30 30h: Get Firmware Version escape command response

7Eh: checksum of {83 19 00 00 00 00 00 00 00 00 E1 00 00 00 14 41 43 52 31 35 35 32 20 44 20 46
57 20 37 2E 30 30 2E 30 30h }

03h: End of Text

3.3. User Interface

3.3.1. Buzzer and LED

The monotone buzzer and LEDs used for showing the state of the contactless interfaces. The Blue LED is used for showing PICC status.

Reader States	Buzzer	Blue LED (PICC)
1. Plug in the reader	Beep Once	● >> ● >> ●
2. Standby (Contactless Polling, no PICC card)	Off	●
3. Standby (No Polling)	Off	Off
4. Contactless Card is tapped	Beep Once	●
5. Contactless Card is presence	Off	●
6. Contactless Card is removed	Off	●
7. Contactless Card is communicating	Off	Fast Blinking

Table 3: Buzzer and LED Indicator

4.0. Software Design

4.1. PCSC API

This section will describe some of the PCSC API for application programming usage. For more details, please refer to Microsoft MSDN Library or PCSC workgroup.

4.1.1. SCardEstablishContext

The SCardEstablishContext function establishes the resource manager context within which database operations are performed.

Refer to: <http://msdn.microsoft.com/en-us/library/windows/desktop/aa379479%28v=vs.85%29.aspx>

This function should be performed first before any other PCSC operation.

Example:

```
#define SCARD_SCOPE_USER 0

SCARDCONTEXT hContext;
int retCode;
void main ()
{
    // To establish the resource manager context and assign it to "hContext"
    retCode = SCardEstablishContext(SCARD_SCOPE_USER,
                                    NULL,
                                    NULL,
                                    &hContext);
    if (retCode != SCARD_S_SUCCESS)
    {
        // Establishing resource manager context failed
    }
    else
    {
        // Establishing resource manager context successful
        // Further PCSC operation can be performed
    }
}
```


4.1.2. SCardListReaders

The SCardListReaders function provides the list of readers within a set of named reader groups, eliminating duplicates.

The caller supplies a list of reader groups, and receives the list of readers within the named groups. Unrecognized group names are ignored. This function only returns readers within the named groups that are currently attached to the system and available for use.

Refer to: <http://msdn.microsoft.com/en-us/library/windows/desktop/aa379793%28v=vs.85%29.aspx>
Example:

```
#define SCARD_SCOPE_USER 0

SCARDCONTEXT hContext; // Resource manager context
int retCode;
char readerName [256]; // List reader name

void main ()
{
    // To establish the resource manager context and assign to "hContext"
    retCode = SCardEstablishContext(SCARD_SCOPE_USER,
                                    NULL,
                                    NULL,
                                    &hContext);
    if (retCode != SCARD_S_SUCCESS)
    {
        // Establishing resource manager context failed
    }
    else
    {
        // Establishing resource manager context successful
        // List the available reader which can be used in the system
        retCode = SCardListReaders (hContext,
                                    NULL,
                                    readerName,
                                    &size);
        if (retCode != SCARD_S_SUCCESS)
        {
            // Listing reader fail
        }
        if (readerName == NULL)
        {
            // No reader available
        }
        else
        {
            // Reader listed
        }
    }
}
```


4.1.3. SCardConnect

The SCardConnect function establishes a connection (using a specific resource manager context) between the calling application and a smart card contained by a specific reader. If no card exists in the specified reader, an error is returned.

Refer to: <http://msdn.microsoft.com/en-us/library/windows/desktop/aa379473%28v=vs.85%29.aspx>

Example:

```
#define SCARD_SCOPE_USER 0

SCARDCONTEXT hContext;           // Resource manager context
SCARDHANDLE hCard;              // Card context handle
unsigned long dwActProtocol;    // Establish active protocol
int retCode;
char readerName [256];          // List reader name
char rName [256];               // Reader name for connection

void main ()
{
    ...
    if (readerName == NULL)
    {
        // No reader available
    }
    else
    {
        // Reader listed
        rName = "ACS ACR1552 1S CL Reader PICC 0"; // Depends on what
                                                       // reader be used
                                                       // Should connect to
                                                       // PICC interface
        retCode = SCardConnect(hContext,
                              rName,
                              SCARD_SHARE_SHARED,
                              SCARD_PROTOCOL_T1,
                              &hCard,
                              &dwActProtocol);
        if (retCode != SCARD_S_SUCCESS)
        {
            // Connection failed (May be because of incorrect reader
            // name, or no card was detected)
        }
        else
        {
            // Connection successful
        }
    }
}
```


4.1.4. SCardControl

The SCardControl function gives you direct control of the reader. You can call it any time after a successful call to SCardConnect and before a successful call to SCardDisconnect. The effect on the state of the reader depends on the control code.

Refer to: <http://msdn.microsoft.com/en-us/library/windows/desktop/aa379474%28v=vs.85%29.aspx>

Note: Commands from **Escape Command** use this API for sending.

Example:

```
#define SCARD_SCOPE_USER 0

#define EscapeCommand 0x310000 + 3500*4
SCARDCONTEXT hContext; // Resource manager context
SCARDHANDLE hCard; // Card context handle
unsigned long dwActProtocol; // Established active protocol
int retCode;
char readerName [256]; // Lists reader name
char rName [256]; // Reader name for connection
BYTE SendBuff[262], // APDU command buffer
      RecvBuff[262]; // APDU response buffer
BYTE FWVersion [20], // For storing firmware
      version message
BYTE ResponseData[50]; // For storing card response
DWORD SendLen, // APDU command length
      RecvLen; // APDU response length

void main ()
{
    ...
    rName = "ACS ACR1552 1S CL Reader PICC 0"; // Depends on what
                                                // reader will be used
                                                // Should connect to
                                                // PICC interface

    retCode = SCardConnect(hContext,
                          rName,
                          SCARD_SHARE_DIRECT,
                          SCARD_PROTOCOL_T0| SCARD_PROTOCOL_T1,
                          &hCard,
                          &dwActProtocol);
    if (retCode != SCARD_S_SUCCESS)
    {
        // Connection failed (may be because of incorrect reader
        name, or no card was detected)
    }
    else
    {
        // Connection successful
        RecvLen = 262;
        // Get firmware version
        SendBuff[0] = 0xE0;
        SendBuff[1] = 0x00;
        SendBuff[2] = 0x00;
        SendBuff[3] = 0x18;
        SendBuff[4] = 0x00;
```



```
SendLen = 5;
retCode = SCardControl ( hCard,
                        EscapeCommand,
                        SendBuff,
                        SendLen,
                        RecvBuff,
                        RecvLen,
                        &RecvLen);
if (retCode != SCARD_S_SUCCESS)
{
    // APDU sending failed
    return;
}
else
{
    // APDU sending successful
    // The RecvBuff stores the firmware version message.
    for (int i=0;i< RecvLen-5;i++)
    {
        FWVersion[i] = RecvBuff [5+i];
    }
}
// Connection successful
RecvLen = 262;

// Turn Green LED on, turn Red LED off
SendBuff[0] = 0xE0;
SendBuff[1] = 0x00;
SendBuff[2] = 0x00;
SendBuff[3] = 0x29;
SendBuff[4] = 0x01;
SendBuff[5] = 0x02; // Green LED On, Red LED off
SendLen = 6;
retCode = SCardControl ( hCard,
                        EscapeCommand,
                        SendBuff,
                        SendLen,
                        RecvBuff,
                        RecvLen,
                        &RecvLen);
if (retCode != SCARD_S_SUCCESS)
{
    // APDU sending failed
    return;
}
else
{
    // APDU sending success
}
```


4.1.5. SCardTransmit

The SCardTransmit function sends a service request to the smart card and expects to receive data back from the card.

Refer to: <http://msdn.microsoft.com/en-us/library/windows/desktop/aa379804%28v=vs.85%29.aspx>

Note: APDU Commands (i.e. the commands sent to connected card, PCSC Pseudo APDU (with Proprietary Extension) for PICC, and Proprietary Pseudo APDU for PICC) use this API for sending.

Example:

```
#define SCARD_SCOPE_USER 0

SCARDCONTEXT hContext; // Resource manager context
SCARDHANDLE hCard; // Card context handle
unsigned long dwActProtocol; // Established active protocol
int retCode;
char readerName [256]; // List reader name
char rName [256]; // Reader name for connect
BYTE SendBuff[262], // APDU command buffer
      RecvBuff[262]; // APDU response buffer
BYTE CardID [8], // For storing the FeliCa IDM/
      MIFARE UID
BYTE ResponseData[50]; // For storing card response
DWORD SendLen, // APDU command length
       RecvLen; // APDU response length
SCARD_IO_REQUEST ioRequest;

void main ()
{
    ...
    rName = "ACS ACR1552 1S CL Reader PICC 0"; // Depends on what
                                                 // reader should be used
                                                 // Should connect to PICC
                                                 // interface
    retCode = SCardConnect(hContext,
                          rName,
                          SCARD_SHARE_SHARED,
                          SCARD_PROTOCOL_T1,
                          &hCard,
                          &dwActProtocol);
    if (retCode != SCARD_S_SUCCESS)
    {
        // Connection failed (May be because of incorrect reader
        // name, or no card was detected)
    }
    else
    {
        // Connection successful
        ioRequest.dwProtocol = dwActProtocol;
        ioRequest.cbPciLength = sizeof(SCARD_IO_REQUEST);
        RecvLen = 262;
    }
}
```



```
// Get MIFARE UID/ FeliCa IDM
SendBuff[0] = 0xFF;
SendBuff[1] = 0xCA;
SendBuff[2] = 0x00;
SendBuff[3] = 0x00;
SendBuff[4] = 0x00;
SendLen = 5;
    retCode = SCardTransmit( hCard,
                            &ioRequest,
                            SendBuff,
                            SendLen,
                            NULL,
                            RecvBuff,
                            &RecvLen);

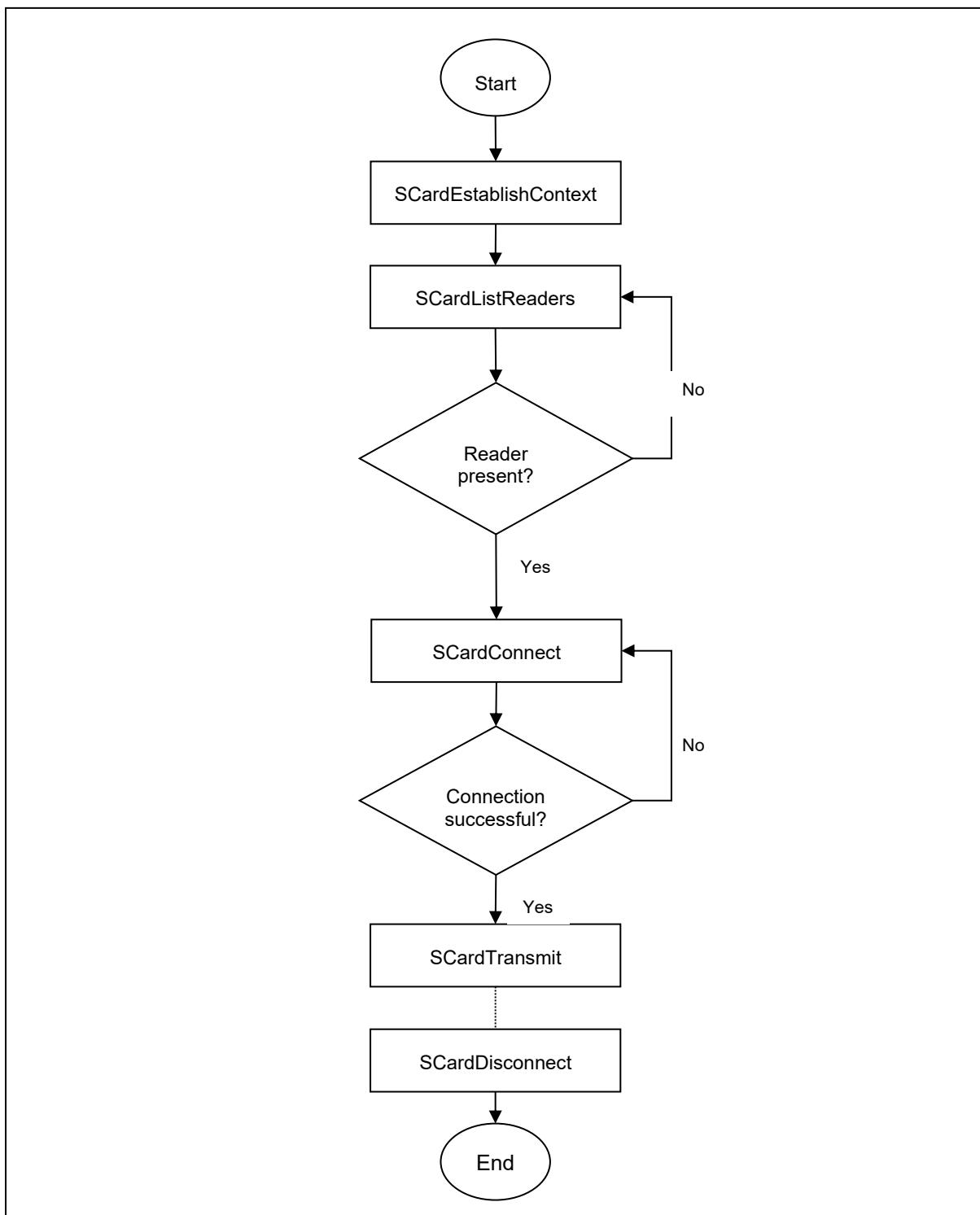
    if (retCode != SCARD_S_SUCCESS)
    {
        // APDU sending failed
        return;
    }
    else
    {
        // APDU sending successful
        // The RecvBuff stores the IDM for FeliCa / the UID for
        // MIFARE.
        // Copy the content for further FeliCa access
        for (int i=0;i< RecvLen-2;i++)
        {
            CardID [i] = RecvBuff[i];
        }
    }
}
```


4.1.6. SCardDisconnect

The **SCardDisconnect** function terminates a connection previously opened between the calling application and a *smart card* in the target *reader*.

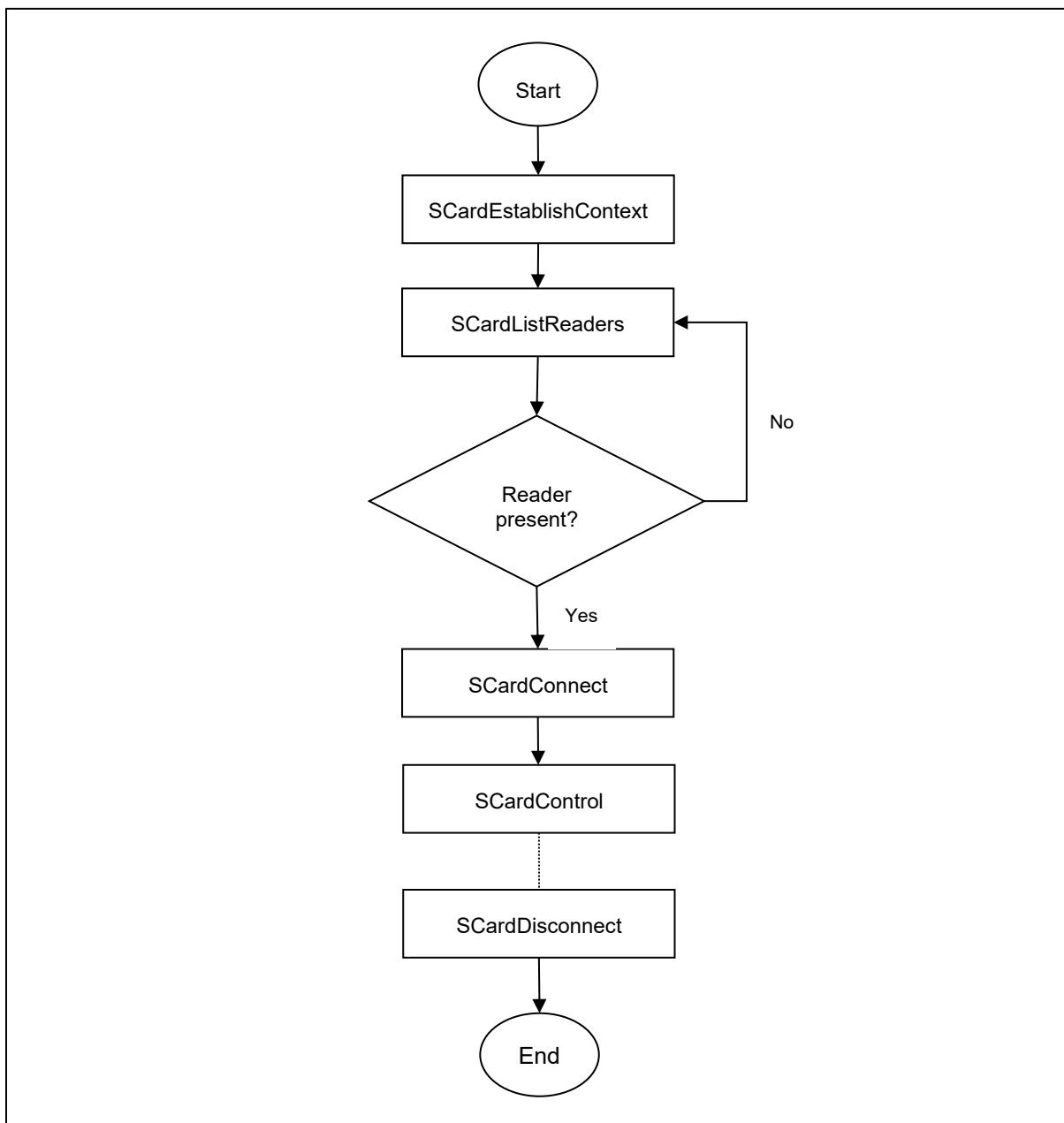
Refer to: <http://msdn.microsoft.com/en-us/library/windows/desktop/aa379475%28v=vs.85%29.aspx>

This function is used to end the PCSC Operation.


Example:

```
#define SCARD_SCOPE_USER 0

SCARDCONTEXT      hContext;           // Resource manager context
SCARDHANDLE       hCard;              // Card context handle
unsigned long     dwActProtocol;      // Established active protocol
int               retCode;


void main ()
{
    ...
    // Connection successful
    ...
    retCode = SCardDisconnect(hCard, SCARD_RESET_CARD);
    if (retCode != SCARD_S_SUCCESS)
    {
        // Disconnection failed
    }
    else
    {
        // Disconnection successful
    }
}
```

4.1.7. APDU Flow

Figure 1: ACM1552D-C7 APDU Flow

4.1.8. Escape Command Flow

Figure 2: ACM1552D-C7 Escape Command Flow

4.2. Contact Smart Card Protocol

4.2.1. ACOS6-SAM Commands

This section contains SAM-specific commands. CCID Host could send Card Native Command or APDU to the Reader by using CCID Message PC_to_RDR_XfrBlock.

Note: Please note that the ACOS6-SAM component is not part of the standard retail version of the reader. For complete information on ACOS6-SAM Commands and Scenarios, please contact an ACS representative for a copy of the ACOS6-SAM Reference Manual.

4.2.1.1. Generate Key

This command is used to generate a diversified key to load into the ACOS3/6 card or other cards from deviation data such as a client card serial number. This command is catered for client card issuance purposes.

APDU	Description	
CLA	80h	
INS	88h	
	00h	Generate 8 Byte Key
P1	01h	Generate 16 Byte Key
	02h	Generate 24 Byte Key
P2	Key index of Master Key to generate Derived Key	
P3	08h	
Data	Input Data	

Specific Response Status Bytes

SW1	SW2	Description
69	86h	No DF selected
6A	86h	Invalid P1 or P2
67	00h	Incorrect P3, must be 08h
6A	83h	Referenced key record not found in EF2
69	81h	Invalid EF2 (record size, file type, etc.)
6A	88h	EF2 not found
62	83h	Current DF is blocked; EF2 is blocked
69	83h	Usage counter is zero.
69	82h	Security condition not satisfied
6A	87h	Referenced Master Key is not capable of 3-DES encryption
61	08h	Command completed, issue GET RESPONSE to get the result

4.2.1.2. Diversify (or load) Key Data

This command prepares the SAM card to perform ciphering operations by diversifying and loading the key. It takes the serial number and CBC initial vector as command data input.

APDU Description																	
CLA	80h																
INS	72h																
	b7	b6	b5	b4	b3	b2	b1	b0	Description								
	-	0	0	0	0	0	0	1	Secret Code (Sc)								
	-	0	0	0	0	0	1	0	Account Key (K_{ACCT})								
	-	0	0	0	0	0	1	1	Terminal Key								
P1	-	0	0	0	0	1	0	0	Card Key								
	-	0	0	0	0	1	0	1	Bulk Encryption Key (Not diversified)								
	-	0	0	0	0	1	1	0	Initial vector								
	0	-	-	-	-	-	-	-	16-byte Key								
	1	-	-	-	-	-	-	-	24-byte Key								
Index of Master Key:																	
P2	Bit7:	1 = local Key in current EF2; 0 = global KEY EF2															
	Bit6-Bit5:	00b - RFU															
	Bit4-Bit0:	Key Index															
P3	If P1 = 1-4, P3 = 8/16,(if algo is AES, P3 = 8/16)																
	If P1 = 5, P3 = 0																
Data	If P1 = 6,																
	P3 = 8 (Algo of Master Key is DES/ 3DES/ 3KDES)																
	P3 = 16 (Algo of Master Key is AES)																
	If P1 = 1-4 Client card's Serial Number, (if algo is AES, Data is Client card's Serial Number or Client card's Serial Number append with "0000000000000000")																
	If P1 = 5, No command data.																
	If P1 = 6, DES/3DES/3KDES/AES CBC initial vector.																

Specific Response Status Bytes

SW1	SW2	Description
69	86h	No DF selected
6A	86h	Wrong P1, P1 must be 1 to 6
67	00h	Wrong P3, P3 must be 8 (or 0)
62	83h	Current DF is blocked, or EF2 is blocked
69	82h	Security condition not satisfied
6A	88h	EF2 not found
6A	83h	Referenced Master Key in EF2 not found

SW1	SW2	Description
69	81h	Invalid EF2 (FDB, MRL, etc., not consistent)
6A	87h	Referenced KEY not capable of authentication
69	83h	Referenced Key is locked
90	00h	Target key generated, and ready in SAM memory

4.2.1.3. Encrypt

This command is used to encrypt data using DES or 3DES with either:

1. The session key created by the mutual authentication procedure with an ACOS3/6, DESFire®, DESFire® EV1 or MIFARE Plus card.
2. A diversified key (secret code).
3. A bulk encryption key.
4. Encrypt the diversified secret code with the session key.
5. Prepare ACOS3 secure messaging command given a non-SM command.

APDU	Description								
CLA	80h								
INS	74h								
	b7	b6	b5	b4	b3	b2	b1	b0	Description
P1	-	0	0	0	0	0	0	-	ECB Mode
	-	0	0	0	0	0	1	-	CBC Mode
	-	0	0	0	0	1	0	-	Retail MAC Mode
	-	0	0	0	0	1	1	-	MAC Mode
	-	0	0	0	1	0	0	-	Prepare ACOS3 SM command.
	-	1	0	0	1	0	1	-	MIFARE DESFire Encryption
	-	1	0	0	1	1	0	-	MIFARE DESFire EV1 Encryption
	-	0	0	0	1	1	1	-	CMAC
	-	0	1	0	0	0	0		MIFARE Plus Command
	-	0	1	0	0	0	1		MIFARE Plus Response
	0	-	-	-	-	-	-	0	3DES
	0	-	-	-	-	-	-	1	DES
	1	-	-	-	-	-	-	0	3K DES
	1	-	-	-	-	-	-	1	AES
	-	-	-	-	-	-	-	-	All other values – RFU

APDU Description

P2 is derived key in SAM set using Load Key function:	
	1 – Encrypt Data with Session Key K_s
	2 – Encrypt Data with Diversified Key S_c
P2	3 – Encrypt Data with Bulk Encryption Key
	0 – return ENC (S_c, K_s)
	If P1.b3 = 1 or b5=1, P2 must be 1
	If P2 = 0h, P1 can be either 0 or 1
<hr/>	
	P3 < 128
	If bit 3 of P1 not equal to 1 and bit 5 of P1 not equal to 1
P3	- If P2 = 1-3, multiple of 8 (DES/3DES/3KDES) or 16 (AES) up to 128 bytes
	- If P2 = 0, 0
<hr/>	
	Plain text
	If P2 b6 = 1, The DATA format should be:
	<ul style="list-style-type: none">• Length of Plain text data• Length of Command and Header of DESFire Card• Command and Header of DESFire Card• Plain text
	P1 = A1h, the encryption is for a MIFARE Plus command
Data	<ul style="list-style-type: none">• if MFP Command is <i>value</i> operations command, the DATA format should be Command code(1 BYTE)+BlockNum(2/4 BYTE)+Value(4 BYTE).• if MFP Command is <i>Proximity Check</i>, the DATA format should be Command code(1 BYTE)+ PPS1(1 BYTE).• if MFP Command is <i>Read</i>, the DATA format should be Command code(1 BYTE)+ BlockNum(2 BYTE)• if MFP Command is <i>Write</i>, the DATA format should be Command code(1 BYTE)+ BlockNum(2 BYTE) +plaintext
	P1=A3h,
	<ul style="list-style-type: none">• The data return by ICC (don't include SC code and don't include RMAC if RMAC exist)
<hr/>	

Specific Response Status Bytes

SW1	SW2	Description
69	86h	No DF selected
6A	86h	Invalid P1 or P2
67	00h	Incorrect P3
6A	83h	ACOS Target Key is not ready (use Diversify to generate the key)
61	XX	Encryption is done, use GET RESPONSE to get the result

4.2.1.4. Decrypt

This command is used to decrypt data using DES or 3DES or AES with either:

1. The session key created by the mutual authentication procedure with an ACOS3/6, MIFARE DESFire, MIFARE DESFire EV1 or MIFARE Plus card.
2. A diversified key (secret code).
3. A bulk encryption key.
4. Decrypt the diversified secret code with the session key.
5. Verify and Decrypt ACOS3 secure-messaging response.

Verify and Decrypt ACOS3 SM Response:

APDU Description								
CLA	80h							
INS	76h							
	b7	b6	b5	b4	b3	b2	b1	b0
	-	0	0	0	0	0	0	-
	-	0	0	0	0	0	1	-
	-	0	0	0	1	0	0	-
	-	1	0	0	1	0	1	-
	-	1	0	0	1	1	0	-
	-	0	1	0	0	1	0	-
P1	0	-	-	-	-	-	-	0
	0	-	-	-	-	-	-	1
	1	-	-	-	-	-	-	0
	1	-	-	-	-	-	-	1
	0	0	0	0	-	-	-	-
	All other values - RFU							
P2	P2 is derived key in SAM set using Load Key function:							
	1 – Decrypt Data with Session Key <i>Ks</i> 2 – Decrypt Data with Diversified Key <i>Sc</i> 3 – Decrypt Data with Bulk Encryption Key 0 – return DEC (<i>Sc</i> , <i>Ks</i>)							
P3	P3 < 128 If P1 = A5h, P3=16/32/48 If bit 3 of P1 not equal to 1 - If P2 = 1-3, multiple of 8 (DES/3DES/3KDES) or 16 (AES) up to 128 bytes - If P2 = 0, 0							
	Ciphertext If P1 = A5h, The DATA is Encrypted text If P2 b6 = 1, The DATA format should be:							
Data	<ul style="list-style-type: none"> • Length of Plain text data, if unknown, use 00 • Length of Command and Header of DESFire Card • Command and Header of DESFire Card • Encrypted text 							

Specific Response Status Bytes

SW1	SW2	Description
69	86h	No DF selected
6A	86h	Invalid P1 or P2
67	00h	Incorrect P3
6A	83h	ACOS Target Key is not ready (use Diversify to generate the key)
61	XX	Decryption is done, use GET RESPONSE to get the result

4.2.1.5. Prepare Authentication

This command is used to authenticate the SAM card (as the terminal) to the ACOS 3/6 card or MIFARE Ultralight C/MIFARE DESFire Card/MIFARE Plus card.

APDU	Description
CLA	80h
INS	78h
	00h – 3DES
	01h – DES
	02h – 3KDES (MIFARE DESFire EV1/ACOS3)
P1	03h – AES (MIFARE DESFire EV1/MIFARE Plus/ACOS3)
	80h – 3DES (MIFARE DESFire Authenticate only)
	81h – DES (MIFARE DESFire Authenticate only)
	Other – RFU
	0h – Verify ACOS3/6 Authenticate Return
	01h – MIFARE Ultralight C/DESFire Authenticate by (Diversified) Terminal Key
P2	05h – MIFARE Ultralight C/DESFire Authenticate by Bulk Encryption Key
	02h – MIFARE Plus Authenticate. First Authenticate of SL1 to SL3
	03h – MIFARE Plus Authenticate. Authentication in SL1 to SL2.
	04h – MIFARE Plus Authenticate. Following Authenticate of SL2 to SL3.
P3	8 – (P1 = 00h, 01h, 02h, 80h, 81h)
	16 – (P1 = 03h)
Data	Card Challenge Data

Specific Response Status Bytes

SW1	SW2	Description
69	86h	No DF selected
6A	86h	Invalid P1 or P2
67	00h	Incorrect P3, must be 08h
6A	83h	ACOS Key (KT or KC) is not ready (use Diversify to generate this key)
69	82h	Security condition not satisfied
61	10h	Command completed, issue GET RESPONSE to get the result

4.2.1.6. Verify Authentication

This command is used to verify the ACOS 3/6, MIFARE Ultralight C, MIFARE DESFire/MIFARE DESFire EV1 or MIFARE Plus card to the terminal. The Session Key K_s would also be generated internally.

APDU	Description
CLA	80h
INS	7Ah
	00h – 3DES (P2 = 0) 01h – DES (P2 = 0)
P1	02h – 3KDES (P2 = 0 · ACOS3) 03h – AES (P2 = 0 · ACOS3) Other – RFU
	00h – Verify ACOS3/6 Authenticate Return
P2	01h – Verify MIFARE Ultralight C®/ DESFire®/ DESFire® EV1 Authenticate Return 02h – Verify MIFARE Plus Authenticate return
	08h – (P2 = 0, P2 = 1 and Session Key is DES/3DES) 16h – (P2 = 1 and Session Key is 3KDES/AES) 16h – (P2=02, and MIFARE Plus return data $ek(RndA')$) 32h – (P2=02, and MIFARE Plus return data $ek(TI+PICCcap2+PCDcap2)$)
	ACOS 3/6: DES (K_s , RND_T)
Data	MIFARE DESFire/ DESFire EV1 return data: $ek(RndA')$ MIFARE Plus return data $ek(RndA')$ or $ek(TI+PICCcap2+PCDcap2)$

Specific Response Status Bytes

SW1	SW2	Description
69	86h	No DF selected
6A	86h	Invalid P1 or P2
67	00h	Incorrect P3, must be 08h
6A	83h	ACOS-SAM Session Key or RND_T are not ready. Use PREPARE AUTHENTICATION to build these keys.
69	82h	Data is incorrect
90	00h	Data is correct, ACOS Mutual Authentication is successful

4.2.1.7. Verify ACOS Inquire Account

This command is used to verify the ACOS3/6 card's Inquire Account purse command. It would verify that the MAC checksum returned by ACOS3/6 are correct with the SAM's diversified key.

APDU	Description											
CLA	80h											
INS	7Ch											
	b7	b6	b5	b4	b3	b2	b1	b0	Description			
	-	0	0	0	0	-	0	-	ACOS INQ_AUT is disabled			
	-	0	0	0	0	-	1	-	ACOS INQ_AUT is enabled			
	-	0	0	0	0	0	-	-	ACOS INQ_ACC_MAC is disabled			
P1	-	0	0	0	0	1	-	-	ACOS INQ_ACC_MAC is enabled			
	0	-	-	-	-	-	-	0	3DES			
	0	-	-	-	-	-	-	1	DES			
	1	-	-	-	-	-	-	0	3K DES (ACOS3 only)			
	1	-	-	-	-	-	-	1	AES (ACOS3 only)			
P2	0h											
P3	1Dh											
Data	Data Block returned by INQUIRE ACCOUNT of client ACOS card, see below.											

Specific Response Status Bytes

SW1	SW2	Description
69	86h	No DF selected
6A	86h	Invalid P1 or P2
67	00h	Incorrect P3
6A	83h	ACOS Key K_S or K_{ACCT} are not ready; use DIVERSIFY command to generate K_{ACCT} ; if applicable, use "Prepare Authentication" to generate K_S .
6F	00h	Data Block's MAC is incorrect
90	00h	Data Block's MAC is correct

4.2.1.8. Prepare ACOS Account Transaction

To create an ACOS3/6 Credit/Debit command, the MAC must be computed for ACOS3/6 to verify.

APDU	Description								
CLA	80h								
INS	7Eh								
	b7	b6	b5	b4	b3	b2	b1	b0	Description
	-	0	0	0	0	0	0	-	ACOS TRNS_AUT is disabled
	-	0	0	0	0	0	1	-	ACOS TRNS_AUT is enabled
P1	0	-	-	-	-	-	-	0	3DES
	0	-	-	-	-	-	-	1	DES
	1	-	-	-	-	-	-	0	3K DES (ACOS3 only)
	1	-	-	-	-	-	-	1	AES (ACOS3 only)
P2	E2h: Credit E6h: Debit								
P3	0Dh								
Data	Data Block								

Specific Response Status Bytes

SW1	SW2	Description
69	86h	No DF selected
6A	86h	Invalid P1 or P2
67	00h	Incorrect P3, must be 0Dh
6A	83h	ACOS Key Ks or K _{ACCT} are not ready; use DIVERSIFY command to generate K _{ACCT} ; if applicable, use "Prepare Authentication" to generate Ks.
61	0Bh	Command completed, issue GET RESPONSE to get the result

4.2.1.9. Verify Debit Certificate

For ACOS3/6, if the DEBIT command has P1 = 1, a debit certificate is returned. The debit certificate can be checked by comparing the ACOS3 response to the result of this command.

APDU	Description								
CLA	80h								
INS	70h								
	b7	b6	b5	b4	b3	b2	b1	b0	Description
	-	0	0	0	0	0	0	-	ACOS TRNS_AUT is disabled
P1	-	0	0	0	0	0	1	-	ACOS TRNS_AUT is enabled
	0	-	-	-	-	-	-	0	3DES
	0	-	-	-	-	-	-	1	DES
	1	-	-	-	-	-	-	0	3K DES (ACOS3 only)

APDU	Description
1	- - - - - - - - 1 AES (ACOS3 only)
P2	0h
P3	14h
Data	Data Block

Specific Response Status Bytes

SW1	SW2	Description
69	86h	No DF selected
6A	86h	Invalid P1 or P2
67	00h	Incorrect P3, must be 14h
6A	83h	ACOS Key Ks or K _{ACCT} are not ready; use DIVERSIFY command to generate K _{ACCT} ; if applicable, use PREPARE AUTHENTICATION to generate Ks.
69	82h	Security condition not satisfied
6F	00h	DEBIT CERTIFICATE is invalid
90	00h	Success, DEBIT CERTIFICATE is valid

4.2.1.10. Get Key

This command allows secure key injection from the current SAM's Key File (SFI=02h) into another ACOS6/ACOS6-SAM with or without key diversification. Using this ensures that the keys to be injected are protected by encryption and message authentication codes.

The Get Key command also allows secure key injection from the current SAM's Key File (SFI=02h) into ACOS7/10, MIFARE DESFire, MIFARE DESFire EV1 or MIFARE Plus card with key diversification. Using this ensures that the key to be injected is protected by encryption and message authentication codes.

If bit 7 of the Special Function Flag (Key Injection Only Flag) of the **Card Header Block** (Section 3.2 of ACOS6-SAM Reference Manual) has been set and the key file has been activated, Get Key must be used for loading or changing keys in the card. Setting this bit will disable Read Record command for the key file under any circumstances after activation.

Before this command is to be executed, a session key is already established with the target card with the mutual authentication procedure of **Mutual Authentication** (Section 5.3 of ACOS6-SAM Reference Manual) or the MIFARE Plus/MIFARE DESFire mutual authentication procedure.

Note: The GET KEY command can only get the Key data.

APDU	Description
CLA	80h
INS	CAh
P1	Get Key for ACOS card Set Key

APDU	Description		
00h	Response data is Key in MSAM		
01h	Response data is 16-byte Diversify Key		
02h	Response data is 24-byte Diversify Key		
03h	Response data is the Change Key command of MIFARE Plus Card		
	Get Key for DESFire card Change Key, Response data for DESFire/DESFire EV1 Change Key		
	Card Type	Authenticate Key No. And Changing Key No.*	Key Length
80h	MIFARE DESFire	Are DIFFERENT in MIFARE DESFire card	16 bytes
81h	MIFARE DESFire EV1	Are DIFFERENT in MIFARE DESFire EV1 card	16 bytes
82h	MIFARE DESFire EV1	Are DIFFERENT in MIFARE DESFire EV1 card	24 bytes
88h	MIFARE DESFire	Are the SAME in MIFARE DESFire card	16 bytes
89h	MIFARE DESFire EV1	Are the SAME in MIFARE DESFire EV1 card	16 bytes
8Ah	MIFARE DESFire EV1	Are the SAME in MIFARE DESFire EV1 card	24 bytes
P2	Key ID in SAM (New key for change)		
P3	If P1 = 00h, P3 is 08h If P1 = 01/02h, P3 is 10h If P1 = 03h, P3 is 0Bh If P1 = 80/81/82/88/89/8Ah: P3 is 0Bh		
Data	If P1 = 00h, command data is RND _{Target} If P1 = 01/02h, command data is RND _{Target} + serial (or batch) number of target card If P1 = 03h <ul style="list-style-type: none"> - Serial Number for target card (8 Byte) - Write Command (A0 or A1) (1 Byte) - BNr (2 Byte) If P1 = 80/81/82/88/89/8Ah: <ul style="list-style-type: none"> - Serial Number for target card (8 Byte) - Original Key ID (Key in SAM card stored the Original key, 00 = Default Key of DESFire - Card) - Key No. (DESFire Card Key No.) - Key Version (DESFire Card Key Version, If not used, value = 00) 		

* This column points out if the listed cards have a distinct Change Key and Authenticate Key, or if they use the same value for both keys.

Specific Response Status Bytes

SW1	SW2	Description
69	85h	SAM Session Key not ready
62	83h	Current DF is blocked, or Target EF is blocked
69	86h	No DF selected
69	81h	Wrong file type of Key file, it should be Internal Linear Variable File
69	82h	Target file's header block has wrong checksum, or security condition not satisfied
6A	86h	Invalid P1 or P2
67	00h	Incorrect P3
6A	83h	Target Key is not ready or Key Length less than 16
61	1Ch	Success, use GET RESPONSE to get the result

4.3. Contactless Smart Card Protocol

4.3.1. ATR Generation

If the reader detects a PICC, an ATR will be sent to the PCSC driver for identifying the PICC.

4.3.1.1. ATR Format for ISO14443 Part 3 PICCs

Byte	Value	Designation	Description
0	3Bh	Initial Header	
1	8Nh	T0	Higher nibble 8 means: no TA1, TB1, TC1 only TD1 is following. Lower nibble N is the number of historical bytes (HistByte 0 to HistByte N-1)
2	80h	TD1	Higher nibble 8 means: no TA2, TB2, TC2 only TD2 is following. Lower nibble 0 means T = 0
3	01h	TD2	Higher nibble 0 means no TA3, TB3, TC3, TD3 following. Lower nibble 1 means T = 1
4 ~ 3+N	80h	T1	Category indicator byte, 80 means A status indicator may be present in an optional COMPACT-TLV data object
	4Fh	Tk	Application identifier Presence Indicator
	0Ch		Length
	RID		Registered Application Provider Identifier (RID) # A0 00 00 03 06
	SS		Byte for standard
	C0 .. C1h		Bytes for card name
	00 00 00 00 00h	RFU	RFU # 00 00 00 00
4+N	UU	TCK	Exclusive-oring of all the bytes T0 to Tk

Example:

ATR for MIFARE Classic 1K = {3B 8F 80 01 80 4F 0C A0 00 00 03 06 03 00 01 00 00 00 00 6Ah}

Where:

Length (YY)

= 0Ch

RID

= {A0 00 00 03 06h} (PC/SC Workgroup)

Standard (SS)

= 03h (ISO 14443A, Part 3)

Card Name (C0 .. C1) = {00 01h} (MIFARE Classic 1K)
Standard (SS) = 03h: ISO 14443A, Part 3
= 11h: FeliCa

Card Name (C0 .. C1):

00 01: MIFARE Classic 1K	00 38: MIFARE Plus® SL2 2K
00 02: MIFARE Classic 4K	00 39: MIFARE Plus® SL2 4K
00 03: MIFARE Ultralight®	00 30: Topaz and Jewel
00 26: MIFARE Mini®	00 3B: FeliCa
00 3A: MIFARE Ultralight® C	FF 28: JCOP 30
00 36: MIFARE Plus® SL1 2K	FF [SAK]: undefined tags
00 37: MIFARE Plus® SL1 4K	

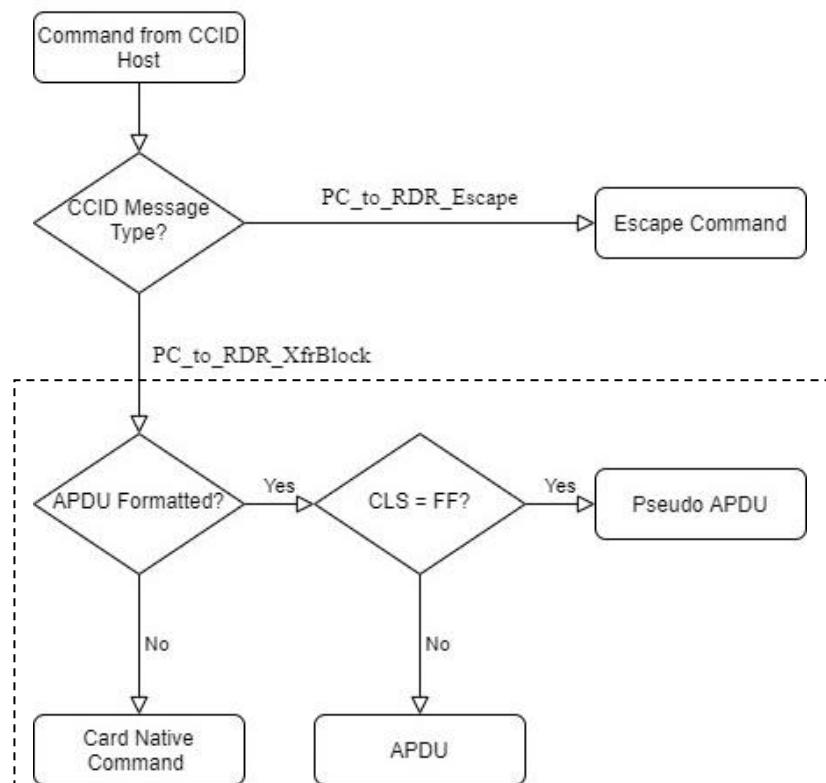
4.3.1.2. ATR Format for ISO14443 Part 4 PICCs

Byte	Value	Designation	Description						
0	3Bh	Initial Header							
1	8Nh	T0	Higher nibble 8 means: no TA1, TB1, TC1 only TD1 is following. Lower nibble N is the number of historical bytes (HistByte 0 to HistByte N-1)						
2	80h	TD1	Higher nibble 8 means: no TA2, TB2, TC2 only TD2 is following. Lower nibble 0 means T = 0						
3	01h	TD2	Higher nibble 0 means no TA3, TB3, TC3, TD3 following. Lower nibble 1 means T = 1						
4 ~ 3+N	XX	T1	Historical Bytes: ISO 14443-A: The historical bytes from ATS response. Refer to the ISO 14443-4 specification. ISO 14443-B: <table border="1"> <tr> <th>Byte 1~4</th><th>Byte 5~7</th><th>Byte 8</th></tr> <tr> <td>Application Data from ATQB</td><td>Protocol Info Byte from ATQB</td><td>Higher nibble=MBLI from ATTRIB command Lower nibble (RFU)=0</td></tr> </table>	Byte 1~4	Byte 5~7	Byte 8	Application Data from ATQB	Protocol Info Byte from ATQB	Higher nibble=MBLI from ATTRIB command Lower nibble (RFU)=0
Byte 1~4	Byte 5~7	Byte 8							
Application Data from ATQB	Protocol Info Byte from ATQB	Higher nibble=MBLI from ATTRIB command Lower nibble (RFU)=0							
4+N	UU	TCK	Exclusive-oring of all the bytes T0 to Tk						

Example 1:

ATR for MIFARE® DESFire® = {3B 81 80 01 80 80h} // 6 bytes of ATR

Note: Use the APDU "FF CA 01 00 00h" to distinguish the ISO 14443A-4 and ISO 14443B-4 PICCs, and retrieve the full ATS if available. ISO 14443A-3 or ISO 14443B-3/4 PICCs do have ATS returned.


APDU Command = FF CA 01 00 00h
APDU Response = 06 75 77 81 02 80 90 00h
ATS = {06 75 77 81 02 80h}

Example 2:

ATR for EZ-Link = {3B 88 80 01 1C 2D 94 11 F7 71 85 00 BEh}
Application Data of ATQB = 1C 2D 94 11h
Protocol Information of ATQB = F7 71 85h
MBLI of ATTRIB = 00h

4.3.2. APDU, Pseudo APDU and Card Native Command

CCID Host could send Card Native Command or APDU to the Reader by using CCID Message PC_to_RDR_XfrBlock in serial interface or SCardTransmit() in USB interface. For PICC, if the card support ISO14443 part 4 protocol or Innovatron protocol, the Reader will pack the Command/APDU into the protocol frame and send to the card directly without any interpretation of the Command/APDU. If the card do not support neither protocol, a message "6A 81" will return to CCID Host.

Note: Due to Microsoft Window Smart Card Plug and Play, Microsoft Window may send some APDU to a card at the time of card present. This action will make a DESFire card entering ISO APDU mode such that the card become fail to receive a native command until a card reset. Usually Microsoft Window will reset the card (by PC_to_RDR_IccPowerOff) after 10s of inactive.

4.3.3. PCSC Pseudo APDU (with Proprietary Extension) for PICC

The following Pseudo APDUs are provided to access a contactless card indirectly. CCID Host could send these APDUs to Reader by using CCID Message PC_to_RDR_XfrBlock. After receiving of a Pseudo APDU, it will be interpreted to generate low level card command(s) and then send to card. After the card handling those low level command(s), Reader collect the response(s) from the card and create a response to send back to CCID Host.

4.3.3.1. Get Data [FF CA ...]

This command is used to read out the data obtained during activation process, such as serial number, protocol parameter etc.

Command

Command	Class	INS	P1	P2	Le
Get Data	FFh	CAh	See below		00h (Full Length)

Command Parameter

P1	P2	Meaning
00h	00h	Get the UID/PUPI/SN of the Card
01h	00h	Get the ATS for Type A Part 4
02h	00h	Get the following Card Type related data in transmission order: Type A: 2 bytes ATQA/ATVA + 4/7/10 Bytes UID + 1 bytes Last SAK. Type B: 12 bytes ATQB
80h	00h	Get the following Card Type related data in transmission order: Type A: 2 bytes ATQA/ATVA + 4/7/10 Bytes UID + 1/2/3 bytes SAK. Type B: 12 bytes ATQB FeliCa: 17 byte ATQ (+ 6 byte ATTR if activated) SRI: 8 byte UID + 1 byte Chip ID. ISO15693: 1 byte DSFID + 8 byte UID CTS: 4 byte SN + 2 byte ATQT Innovatron: 4 byte SN + 1 byte tag address.

Response

Response		Data Out		
Result		Data	SW1	SW2

Response Code

Results	SW1 SW2	Meaning
Success	90 00h	The operation was completed successfully.
Error	6X XXh	Fail.

Examples:

To get the serial number of the “connected PICC”:

UINT8 GET_UID[5] = {FF, CA, 00, 00, 00};

To get the ATS of the “connected ISO 14443 A PICC”:

UINT8 GET_ATS[5] = {FF, CA, 01, 00, 00};

4.3.3.2. Load Key [FF 82 ...]

This command is used to set the Key Data to the internal key buffer specified by Key Buffer Number. The key buffer is volatile and its content would be used during authentication. This command will not generate card data transfer.

Command

Command	Class	INS	P1	P2	Lc	Data In
Load Authentication Keys	FFh	82h	00h	Key Buffer Number (0 to 1)	Key Length	Key Data

Key Length/Data

Card Type	Key Length (Lc)	Key Data (in Transmission/Storing Order)
MIFARE Standard MIFARE Plus SL1	06h	6 Bytes Crypto1 Key A/B.
MIFARE Plus SL1 MIFARE Plus SL2	16h	6 Bytes Crypto1 Key A/B + 16 Bytes AES Key.
MIFARE Plus SL2	06h	6 Bytes Encrypted Crypto1 Key A/B.
MIFARE UltraLightC MIFARE DESFire	10h	16 Bytes 2K3DES Key.

Response Code

Results	SW1 SW2	Meaning
Success	90 00h	The operation was completed successfully.
Error	6X XXh	Fail.

Example:

// Load a key {FF FF FF FF FF FFh} into the volatile memory location 00h.

APDU = {FF 82 00 00 06 FF FF FF FF FF FFh}

4.3.3.3. Authenticate [FF 86 00 00 05 ...]

This command is used to performing an authentication to the card to grant access of the protected blocks/pages. Before sending this command, User should use Load Key command to set the correct key data to the buffer specified by Key Buffer Number.

Command

Command	Class	INS	P1	P2	Lc	Data In
Authenticate	FFh	86h	00h	00h	05h	See Below

Command Data

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4
01h	00h (RFU)	Address	Key Type	Key Buffer Number

Address and Key Type

Card Type	Address	Key Type
MIFARE Standard		60h: Crypto1 Key A
MIFARE Plus SL1	00h~FFh: Block 0~255	61h: Crypto1 Key B
MIFARE Plus SL2		
MIFARE UltraLightC	00h (RFU)	80h: 2K3DES
MIFARE DESFire	00h~0Eh: DESFire Key Number 0~14	0Ah: 2K3DES

Response Code

Results	SW1 SW2	Meaning
Success	90 00h	The operation was completed successfully.
Error	6X XXh	Fail.

Sectors (Total 16 sectors. Each sector consists of 4 consecutive blocks)		Data Blocks (3 blocks, 16 bytes per block)	Trailer Block (1 block, 16 bytes)
Sector 0		00h – 02h	03h
Sector 1		04h – 06h	07h
..	
..	
Sector 14		38h – 0Ah	3Bh
Sector 15		3Ch – 3Eh	3Fh

1 KB

Table 4: MIFARE Classic 1K Memory Map

Sectors (Total 32 sectors. Each sector consists of 4 consecutive blocks)	Data Blocks (3 blocks, 16 bytes per block)	Trailer Block (1 block, 16 bytes)
Sector 0	00h ~ 02h	03h
Sector 1	04h ~ 06h	07h
..		
..		
Sector 30	78h ~ 7Ah	7Bh
Sector 31	7Ch ~ 7Eh	7Fh

Sectors (Total 8 sectors. Each sector consists of 16 consecutive blocks)	Data Blocks (15 blocks, 16 bytes per block)	Trailer Block (1 block, 16 bytes)
Sector 32	80h ~ 8Eh	8Fh
Sector 33	90h ~ 9Eh	9Fh
..		
..		
Sector 38	E0h ~ EEh	EFh
Sector 39	F0h ~ FEh	FFh

2 KB

Table 5: MIFARE Classic 4K Memory Map

Byte Number	0	1	2	3	Page
Serial Number	SN0	SN1	SN2	BCC0	0
Serial Number	SN3	SN4	SN5	SN6	1
Internal/Lock	BCC1	Internal	Lock0	Lock1	2
OTP	OPT0	OPT1	OTP2	OTP3	3
Data read/write	Data0	Data1	Data2	Data3	4
Data read/write	Data4	Data5	Data6	Data7	5
Data read/write	Data8	Data9	Data10	Data11	6
Data read/write	Data12	Data13	Data14	Data15	7
Data read/write	Data16	Data17	Data18	Data19	8
Data read/write	Data20	Data21	Data22	Data23	9
Data read/write	Data24	Data25	Data26	Data27	10
Data read/write	Data28	Data29	Data30	Data31	11
Data read/write	Data32	Data33	Data34	Data35	12
Data read/write	Data36	Data37	Data38	Data39	13
Data read/write	Data40	Data41	Data42	Data43	14
Data read/write	Data44	Data45	Data46	Data47	15

512 bits
or
64 bytes

Table 6: MIFARE Ultralight Memory Map

Examples:

// To authenticate the Block **04h** with a **TYPE A**, key number **00hAPDU = {FF 88 00 04 **60 00h**};**

// To authenticate the Block **04h** with a **TYPE A**, key number **00hAPDU = {FF 86 00 00 05 01 00 **04 60 00h**}**

Note: MIFARE Ultralight does not need to do any authentication. The memory is free to access.

4.3.3.4. Read Binary Blocks [FF B0 ...]

This command is used to read specified number of byte of data from PICC starting from the specified block/page address. Depend on card type, user may need to perform authentication to get the access right of the required block(s)/page(s) before sending this command.

Command:

Command	Class	INS	P1	P2	Le
Read Binary Blocks	FFh	B0h	Mode and Address		Number of Bytes to Read

P1/P2 (Mode and Address)

Card Type	P1[7:4] Mode	P1[3:0] + P2[7:0] Starting Address (MSB First)
MIFARE Standard MIFARE Plus SL1 MIFARE Plus SL2	00h: Skip Trailers 08h: With Trailers	000h~0FFh: Block 0~255
MIFARE Ultralight MIFARE UltraLightC	00h (Reserved)	000h~02Fh: Page 0~47
SRIX4K/SRT512	00h (Reserved)	000h~07Fh: Block 0~127 0FFh: System Area
PicoPass	00h (Reserved)	000h~0FFh: Block 0~255
ISO15693	0h (Reserved)	000h~7FFh: Block 0~2047
Topaz/NFC Type-1 Tag	00h (Reserved)	000h~7FFh: Byte Address
CTS	0h (Reserved)	000h~01Fh: Block 0~31

Le (Number of Bytes to Read)

Type	Byte 0	Byte 1	Byte 2
Short	00h: Read 256 bytes 01h~FFh: Read 1~255 bytes	--	
Extended	00h	0000h: Read 65536 bytes 0001h~FFFFh: Read 1~65535 bytes	

Response Code

Results	SW1 SW2	Meaning
Success	90 00h	The operation was completed successfully.
Error	6X XXh	Fail.

Examples:

// Read 16 bytes from the binary block 04h (MIFARE Classic 1K or 4K)

APDU = FF B0 00 04 10h

// Read 240 bytes starting from the binary block 80h (MIFARE Classic 4K)

// Block 80h to Block 8Eh (15 blocks)

APDU = FF B0 00 80 F0h

4.3.3.5. Update Binary Blocks [FF D6 ...]

This command is used to write specified number (must be multiple of block/page size) of bytes to PICC starting from the specified block/page address. Depend on card type, user may need to perform authentication to get the access right of the required block(s)/page(s) before sending this command.

User should take a great care for writing to block/page that may change the security setting of the card (e.g. sector trailers of MIFARE card) as this may lock the card if incorrect data is written or operation is failed. As a result, to minimize the risk of card locking, it is not recommended to write to multiple block/page in a single APDU command if security block/page is involved.

Command

Command	Class	INS	P1	P2	Lc	Data In
Update Binary Blocks	FFh	D6h	Mode and Address		Number of Bytes to Write	Data Bytes

P1/P2 (Mode and Address) and Write Size alignment (Block/Page Size)

Card Type	P1[7:4] Mode	P1[3:0] + P2[7:0] Starting Address (MSB First)	Blk/Page Size (Bytes)
MIFARE Standard MIFARE Plus SL1 MIFARE Plus SL2	0h: Skip Trailers 8h: With Trailers	000h~0FFh: Block 0~255	16
MIFARE Ultralight MIFARE UltraLightC	0h (Reserved)	000h~02Fh: Page 0~47	4
SRIX4K/SRT512	0h (Reserved)	SRIX4K/SRT512	4
PicoPass	0h (Reserved)	PicoPass	8
ISO15693	0h (Reserved)	000h~7FFh: Block 0~2047	ISO15693
Topaz/NFC Type-1 Tag	0h: with Erase 8h: without Erase	000h~7FFh: Byte Address	1(Addr 78h) or 8(Else)
CTS	0h (Reserved)	000h~01Fh: Block 0~31	CTS

Lc (Number of Bytes to Write)

Type	Byte 0	Byte 1	Byte 2
Short	01h~FFh: Write 1~255 bytes	--	
Extended	00h	0001h~FFFFh: Write 1~65535 bytes	

Response Code

Results	SW1 SW2	Meaning
Success	90 00h	The operation was completed successfully.
Error	6X XXh	Fail.

Examples:

```
// Update the binary block 04h of MIFARE Classic 1K/4K with Data {00 01 .. 0Fh}  
APDU = {FF D6 00 04 10 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0Fh}  
// Update the binary block 04h of MIFARE Ultralight with Data {00 01 02 03h}  
APDU = {FF D6 00 04 04 00 01 02 03h}
```


4.3.4. Pass Though Command

4.3.4.1. Accessing ISO14443-3 Tags

This section shows use pass though command format to send the commands for ISO14443-3.

Command

Command	Class	INS	P1	P2	Lc	Data In
ISO14443-3 Command	FFh	00h	00h	00h	Data Length	Data

Response

Response	Data Out		
Result	Data	SW1	SW2

Response Code

Results	SW1	SW2	Meaning
Success	90	00h	The operation was completed successfully.
Error	6X	XXh	Fail.

4.3.4.1.1. Transfer ISO14443-3 Native Command to Pass Though Command

This section introduce how to transfer ISO14443 native command into pass though format.

Example:

Mifare Ultralight AES Get Version

60

Pass Though Format

FF 00 00 00 01 60

4.3.4.2. Accessing ISO15693 Tags

This section shows use pass though command format to send the commands for ISO15693.

Command

Command	Class	INS	P1	P2	Lc	Data In		Le
ISO15693 Command	FFh	FBh	00h	Flags	Data Length+1	Command Code	Data	--/00h

Where:

Flags: 00h(Default): set flags to 22h but data does not need to include the UID

Others: use the value as flags value

Response

Response	Data Out		
Result	Data	SW1	SW2

Response Code

Results	SW1 SW2	Meaning
Success	90 00h	The operation was completed successfully.
Error	6X XXh	Fail.

4.3.4.2.1. Transfer ISO15693 Command to Pass Though Command

This section introduce how to transfer ISO15693 command into pass though format. Notice that the pass though command only support those commands which run in 26kbps speed. For those commands which support 53kbps please refer to [APDU Commands for PCSC 2.0 Part 3 \(Version 2.02 or above\)](#).

Example 1:

Stay Quiet (Mandatory Command)

22 02 XX XX XX XX XX XX XX XX XX

Where:

22 Flags

02 Stay quiet command code

XX XX XX XX XX XX XX XX 8 bytes UID

Pass Though Format

FF FB 00 22 09 02 XX XX XX XX XX XX XX XX XX

Or

FF FB 00 00 01 02

Example 2:

Read Multiple Blocks (Optional Command)

02 23 00 01

Where:

02 Flags

23 Read multiple blocks command code

00 First block number

01 Read 2 blocks

Pass Though Format

FF FB 00 02 03 23 00 01

Example 3:

Get Random Number (Custom Command for NXP SLIX2)

12 B2 04

Where:

12 Flags

B2 Get random number command code

04 NXP manufacturer code

Pass Though Format

FF FB 00 **12 02 B2 04**

4.3.4.2.2. Supported Commands list

The following table illustrate all the commands in ISO15693-3, for those commands which mark as N/A, please contact info@acs.com.hk. Please notice that ISO15693 card usually does not support all the optional commands, please refer to the datasheet to confirm if the card support the command.

Command Code	Type	Function	Support
01h	Mandatory	Inventory	Yes
02h	Mandatory	Stay Quiet	Yes
20h	Optional	Read Single Block	Yes
21h	Optional	Write Single Block	Yes
22h	Optional	Lock Block	Yes
23h	Optional	Read Multiple Blocks	Yes
24h	Optional	Write Multiple Blocks	Yes
25h	Optional	Select	Yes
26h	Optional	Reset to Ready	Yes
27h	Optional	Write AFI	Yes
28h	Optional	Lock AFI	Yes
29h	Optional	Write DSFID	Yes
2Ah	Optional	Lock DSFID	Yes
2Bh	Optional	Get System Information	Yes
2Ch	Optional	Get Multiple Block Security Status	Yes
2Dh	Optional	Fast Read Multiple Blocks	No
30h	Optional	Extended Read Single Block	Yes
31h	Optional	Extended Write Single Block	Yes
32h	Optional	Extended Lock Block	Yes
33h	Optional	Extended Read Multiple Blocks	Yes
34h	Optional	Extended Write Multiple Blocks	Yes
35h	Optional	Authenticate	N/A*
36h	Optional	KeyUpdate	N/A*
37h	Optional	AuthComm Crypto Format Indicator	N/A*
38h	Optional	SecureComm Crypto Format Indicator	N/A*
39h	Optional	Challenge	N/A*
3Ah	Optional	ReadBuffer	N/A*
3Bh	Optional	Extended Get System Information	Yes
3Ch	Optional	Extended Get Multiple Block Security Status	Yes
3Dh	Optional	Fast Extended Read Multiple Blocks	No

Command Code	Type	Function	Support
A0-DFh	Custom	IC Mfg Dependent	N/A*
E0-FFh	Proprietary	IC Mfg Dependent	N/A*

* Not tested — no supporting card was available.

4.3.4.3. Accessing FeliCa tags

For FeliCa access, the command is different from the one used in PCSC-compliant and MIFARE tags. The command follows the FeliCa specification with an added header.

FeliCa Command Format

Command	Class	INS	P1	P2	Lc	Data In
FeliCa Command	FFh	00h	00h	00h	Length of the Data In	FeliCa Command (start with Length Byte)

FeliCa Response Format (Data + 2 bytes)

Response	Data Out
Result	Response Data

Read Memory Block Example:

1. Connect the FeliCa.

The ATR = 3B 8F 80 01 80 4F 0C A0 00 00 03 06 11 00 3B 00 00 00 00 42h

In which, 11 00 3Bh = FeliCa

2. Read FeliCa IDM.

CMD = FF CA 00 00 00h

RES = [IDM (8bytes)] 90 00h

e.g., FeliCa IDM = 01 01 06 01 CB 09 57 03h

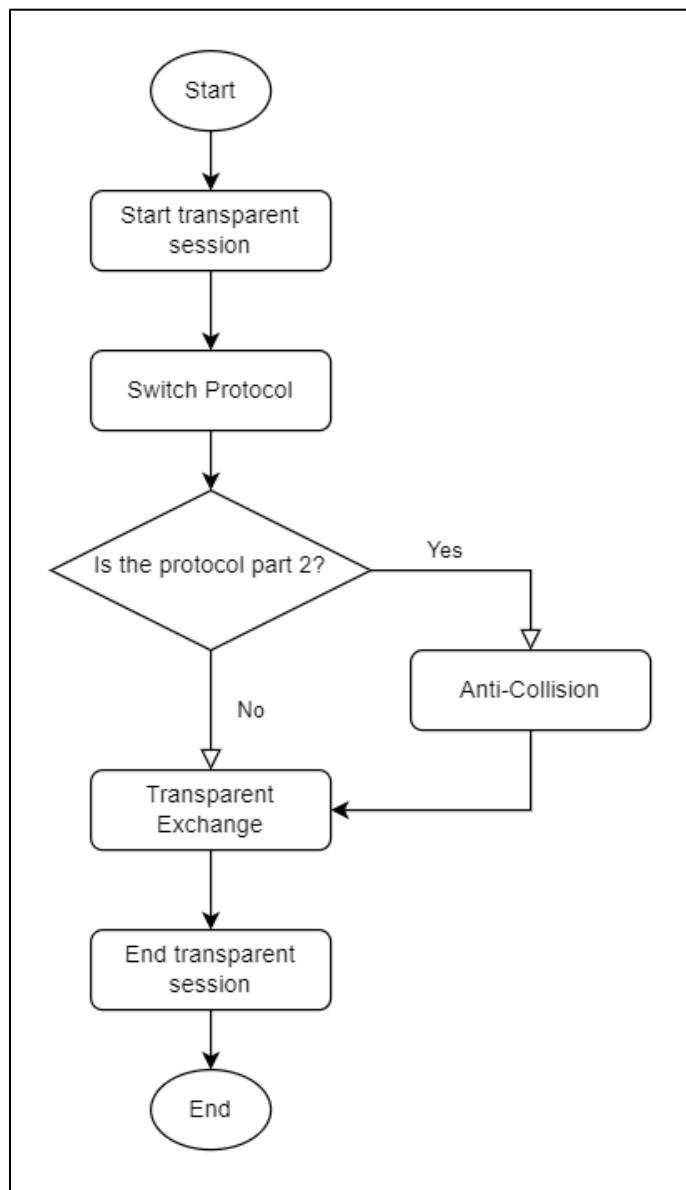
3. FeliCa command access.

Example: "Read" Memory Block.

CMD = FF 00 00 00 10 10 06 01 01 06 01 CB 09 57 03 01 09 01 01 80 00h

where:

Felica Command = 10 06 01 01 06 01 CB 09 57 03 01 09 01 01 80 00h


IDM = 01 01 06 01 CB 09 57 03h

RES = Memory Block Data

4.3.5. APDU Commands for PCSC 2.0 Part 3 (Version 2.02 or above)

PCSC2.0 Part 3 commands are used to transparently pass data from an application to a contactless tag, return the received data transparently to the application and protocol, and switch the protocol simultaneously.

4.3.5.1. PCSC 2.0 Part 3 Flow

Figure 3: ACM1552D-C7 Transparent Session Flow

4.3.5.2. Command and Response APDU Format

Command Format

CLA	INS	P1	P2	Lc	Data In
FFh	C2h	00h	Function	DataLen	Data[DataLen]

Where Functions (1 byte):

- 00h = Manage Session
- 01h = Transparent Exchange
- 02h = Switch Protocol
- Other = RFU

Response Format

Data Out	SW1	SW2
Data Field BER-TLV encoded		

Every command returns SW1 and SW2 together with the response data field (if available). The SW1 SW2 is based on ISO 7816. SW1 SW2 from the C0 data object below should also be used.

C0 data element Format

Tag	Length (1 byte)	SW2
C0h	03h	Error Status

Error Status Description

Error Status	Description
XX SW1 SW2	XX = number of the bad data object in the APDU 00 = general error of APDU 01 = error in the 1 st data object 02 = error in the 2 nd data object
00 90 00h	No error occurred
XX 62 82h	Data object XX warning, requested information not available
XX 63 00h	No information
XX 63 01h	Execution stopped due to failure in other data object
XX 6A 81h	Data object XX not supported
XX 67 00h	Data object XX with unexpected length
XX 6A 80h	Data object XX with unexpected value
XX 64 00h	Data Object XX execution error (no response from IFD)
XX 64 01h	Data Object XX execution error (no response from ICC)
XX 6F 00h	Data object XX failed, no precise diagnosis

The first value byte indicates the number of the erroneous data object XX, while the last two bytes indicate the explanation of the error. SW1 SW2 values based on ISO 7816 are allowed.

If there are more than one data objects in the C-APDU field and one data object failed, IFD can process the following data objects if they do not depend on the failed data objects.

4.3.5.3. Manage Session [FF C2 00 00 ...]

This command allows user to start a session with polling disable for the following communication. User should end the session as soon as those communications finished.

Please note, this command may make the reader fail detect a card present/absence if used incorrectly. This fail may be unable to recover automatically until a logical/physical reader disconnection.

Command

Command	Class	INS	P1	P2	Lc	Data In	Le
Manage Session	FFh	C2h	00h	00h	Cmd Data Length	Cmd TLV	--/00h

Response Code

Rsp Data	SW1 SW2	Meaning
--	90 00h	The operation was completed successfully.
Rsp TLV	90 00h	For Le = 0x00, One of Command TLV Fail. For Detail of Error, refer to Rsp TLV.
--	6X XXh	For Le = --, One of Command TLV Fail.

Cmd TLV

Cmd	Meaning
Start Session: 81 00h	Start a Session and Disable Polling.
RF Off: 83 00h	Turn off RF.
Timer: 5F 46 04h [TIME]	Set the sleep time before the next RF On/Off TLV. [TIME]: 4 byte value (MSB first) in range from 1000 to 100000 us. The actual sleep time will round up to nearest 1000us.
RF On: 84 00h	Turn on RF.
End Session: 82 00h	End a Session and Re-enable Polling.

Rsp TLV

Rsp	Meaning
TLV Error: C0 03 NN 6X XXh	Error in the NN th Command TLV.

4.3.5.3.1. Start Session Data Object

This command is used to start a transparent session. Once the session has started, auto-polling will be disabled until the session is ended.

Start Session Data Object

Tag	Length (1 byte)	Value
81h	00h	-

4.3.5.3.2. End Session Data Object

This command ends the transparent session. The auto-polling will be reset to the state before the session has started.

End Session Data Object

Tag	Length (1 byte)	Value
82h	00h	-

4.3.5.3.3. Turn Off the RF Data Object

This command turns off the antenna field.

Turn off RF Field Data Object

Tag	Length (1 byte)	Value
83h	00h	-

4.3.5.3.4. Turn On the RF Data Object

This command turns on the antenna field.

Turn on the RF Field Data Object

Tag	Length (1 byte)	Value
84h	00h	-

4.3.5.3.5. Timer Data Object

This command creates a 32-bit timer data object in unit of 1 μ s.

Example: If there is a timer data object with 5000 μ s between RF Turn Off Data Object and RF Turn On Data Object, the reader will turn off the RF field for about 5000 μ s before it is turned on.

Timer Data Object

Tag	Length (1 byte)	Value
5F 46h	04h	Timer (4 bytes)

4.3.5.4. Transparent Exchange [FF C2 00 01 ...]

This command allows user transmit and receive any bit or bytes to/from card, with option to configure various link and transport layer (e.g. ISO14443 part 4) and some link layer redundancy (CRC and parity) optionally. User could embed any card specific raw data into this pseudo APDU and then send to the card.

Please note, this command may interfere internal handling of card support, may change the card status without notification to the driver/firmware and may require a card reset and/or removal to bring the driver/firmware back to normal.

Command

Command	Class	INS	P1	P2	Lc	Data In	Le
Transparent Exchange	FFh	C2h	00h	01h	Cmd Data Length	Cmd TLV	00h

Response Code

Results	SW1 SW2	Meaning
Success	90 00h	The operation was completed successfully.
Error	6X XXh	Fail.

Cmd TLV

Cmd	Meaning
Transceive Flag: 90 02 [Flag] 00h	<p>Set the Flag for the following Transceive TLV.</p> <p>Flag[7:5]: RFU; Set to 0</p> <p>Flag[4]: Set to disable ISO14443 Part 4</p> <p>Flag[3]: Set to disable receiving parity handling</p> <p>Flag[2]: Set to disable transmitting parity handling</p> <p>Flag[1]: Set to disable receiving CRC handling</p> <p>Flag[0]: Set to disable transmitting CRC handling</p> <p>If this TLV is missing, the Flag value set in previous command is used. If Flag value is never set, current protocol value is used.</p>
Transmit Bit Frame: 91 01h [NumBit]	<p>Set the Bit Frame for the following Transceive TLV. If this TLV is missing, the default value is 0.</p> <p>NumBit[7:3]: RFU; Set to 0</p> <p>NumBit[2:0]: Number of valid bits in last byte (0 means all valid).</p>
Timer: 5F 46 04h [TIME]	<p>Set the timeout for the following Transceive TLV.</p> <p>[TIME]: 4 byte value (MSB first) in range 1 us to 1000000 us. The actual timeout will round up to nearest 302.07 x 20~15 us.</p> <p>If this TLV is missing, the FWTI value set previously will be used as timeout.</p>
Set FWTI: FF 6E 03 03 01h [FWTI]	Set FWTI/Timeout for Transceive. If FWTI does not set by any previous "FF C2h ..." command, the default value is 0.

Cmd	Meaning
	FWTI: 0 ~ 15, FWT/Timeout = 302.07 x 2FWTI us
Transceive: 95h [Size] [Data]	Size: Size of Data coded in BER-TLV length field. Data: Data to be Transmit.

Rsp TLV

Rsp	Meaning
Receive Bit framing: 92 01h [NumBit]	NumBit[7:3]: RFU; Set to 0. NumBit[2:0]: Number of valid bits in last byte (0 means all valid).
Response: 97h [Size] [Data]	Size: Size of Data coded in BER-TLV length field. Data: Data Received.
Response Status: 96 02h [Status] 00h	Status [7:4]: RFU. Status[3]: Framing Error. Status[2]: Parity Error. Status[1]: RFU. Status[0]: CRC Error.

4.3.5.4.1. Transmission and Reception Flag Data Object

This command defines the framing and RF parameters for the following transmission.

Transmission and Reception Flag Data Object

Tag	Length (1 byte)	Value		Byte 1
		bit	Description	
90h	02h	0	0 – append CRC in the transmit data 1 – do not append CRC in the transmit data	00h
		1	0 – CRC checking from the received data 1 – no CRC checking from the received data	
		2	0 – insert parity in the transmit data 1 – do not insert parity	
		3	0 – expect parity in received date 1 – do not expect parity (i.e. no parity checking)	
		4	0 – append protocol prologue in the transmit data or discard from the response 1 – do not append or discard protocol prologue if any (e.g. PCB, CID, NAD)	
		5-7	RFU	

4.3.5.4.2. Transmission Bit Framing Data Object

This command defines the number of valid bits of the last byte of data to transmit or transceive.

Transmission bit Framing Data Object

Tag	Length (1 byte)	Value	
		bit	Description
91h	01h	0-2	Number of valid bits of the last byte (0 means all bits are valid)
		3-7	RFU

Transmission bit framing data object shall be together with “transmit” or “transceive” data object only. If this data object does not exist, it means all bits are valid.

4.3.5.4.3. Transceive Data Object

This command transmits and receives data from the ICC. After transmission is complete, the reader will wait until the time given in the timer data object.

If no timer data object was defined in the data field, the reader will wait for the duration given in the Set Parameter FWTI Data Object. If no FWTI is set, the reader will wait for about 302 μ s.

Transceive Data Object

Tag	Length		Value
95h	01-7Fh		Data (1~127 Bytes)
95h	81h	80h or above	Data (128~N Bytes)

4.3.5.4.4. Timer Data Object

This command creates a 32-bit timer data object in unit of 1 μ s.

Example: If there is a timer data object with 5000 μ s, the reader will wait the following Transceive TLV for about 5000 μ s before timeout.

Timer Data Object

Tag	Length (1 byte)		Value
5F 46h	04h		Timer (4 bytes)

4.3.5.4.5. Response Bit Framing Data Object

Inside the response, this command is used to notify the received transmission bit Framing Data Object

Tag	Length (1 byte)	Value	
		bit	Description
92h	01h	0-2	Number of valid bits of the last byte (0 means all bits are valid)
		3-7	RFU

Transmission bit framing data object shall be together with “transmit” or “transceive” data object only. If this data object does not exist, it means all bits are valid.

4.3.5.4.6. Response Status Data Object

Inside the response, this command is used to notify the received data status.

Response Status Data Object

Tag	Length (1 byte)	Value		Byte 1	
		Byte 0			
		Bit	Description		
96h	02h	0	0 – CRC is OK or no checked 1 – CRC check fail	RFU	
		1	0 – no collision 1 – collision detected		
		2	0 – no parity error 1 – parity error detected		
		3	0 – no framing error 1 – framing error detected		
		4 - 7	RFU		

4.3.5.4.7. Response Data Object

Inside the response, this command is used to notify the received data status.

Response Data Object

Tag	Length (1 byte)	Value
97h	DataLen	ReplyData (N Byte)

4.3.5.5. Switch Protocol [FF C2 00 02 ...]

This command allows user to switch to specify protocol, select protocol layer and parameter.

Please note, this command may interference internal handling of card support, may change the card status without notification to the driver/firmware and may require a card reset and/or removal to bring the driver/firmware back to normal.

Command

Command	Class	INS	P1	P2	Lc	Data In	Le
Switch Protocol	FFh	C2h	00h	02h	Cmd Data Length	Cmd TLV	00h

Response Code

Rsp Data	SW1 SW2	Meaning
Rsp TLV	90 00h	Succeed with data.
--	90 00h	Succeed.
--	6X XXh	Fail.

Cmd TLV

Cmd	Meaning
Set Baud: FF 6E 03 05 01h [Baud]	Set the Baud for Part/Layer 4 to be applied during Switch Protocol. If [Baud] does not set by any previous "FF C2h ..." command, the default value is 98h (106 kbps). ISO14443: 98h (106 kbps), 99h (212 kbps), 9A (424 kbps), 9B (848 kbps). ISO15693: 80h (26 kbps), 08h (53 kbps)
Switch Protocol: 8F 02h [RF] [Layer]	Switch the protocol to specified RF and/or Layer. [RF]: 00h: ISO14443A, 01h: ISO14443B 02h: ISO15693, 03h: FeliCa, FFh: Current RF Other: RFU [Layer]: 02h: Layer/Part 2, 03h: Layer/Part 3, 04h: Layer/Part 4 (For A/B Only) Other: RFU Note: It must be in a Transparent Session (Disable Polling) if switching to Layer/Part 2.

Rsp TLV

Rsp	Meaning
Response: 8Fh [Size] [Data]	Size: Size of Data coded in BER-TLV length field. Data: ATR (if Part 4) or Final SAK (if Type A part 3) or PI in ATQB (if Type B part 3).

4.3.5.5.1. Switch Protocol Data Object

This command specifies the protocol and different layers of the standard.

Switch Protocol Data Object

Tag	Length (1 byte)	Value	
		Byte 0	Byte 1
8Fh	02h	00h – ISO/IEC14443 Type A 01h – ISO/IEC14443 Type B 02h – ISO15693 03h – FeliCa Other – RFU	02h – Switch to Layer 2 03h – Switch or activate to layer 3 04h – Activate to layer 4 Other - RFU

4.3.5.5.2. Response Data Object

Inside the response, this command is used to notify the received data status.

Response Data Object

Tag	Length (1 byte)	Value
5F 51h	DataLen	ATR
8Fh	DataLen	Final SAK (if Type A part 3) or PI in ATQB (if Type B part 3).

4.3.5.6. PCSC 2.0 Part 3 Example

1. Start Transparent Session.

Command: **FF C2 00 00 02 81 00**

Response: **C0 03 00 90 00 90 00**

2. Turn the Antenna Field off.

Command: **FF C2 00 00 02 83 00**

Response: **C0 03 00 90 00 90 00**

3. Turn the Antenna Field on.

Command: **FF C2 00 00 02 84 00**

Response: **C0 03 00 90 00 90 00**

4. ISO 14443-4A Active.

Command: **FF C2 00 02 04 8F 02 00 04**

Response: **C0 03 01 64 01 90 00** (if no card present)

C0 03 00 90 00 5F 51 [Len] [ATR] 90 00

5. Set the PCB to 0Ah and enable the CRC, parity and protocol prologue in the transmit data.

Command: **FF C2 00 01 0A 90 02 00 00 FF 6E 03 07 01 0A**

Response: **C0 03 00 90 00 90 00**

6. Send the APDU "80B2000008" to card and get response.

Command: **FF C2 00 01 0E 5F 46 04 40 42 0F 00 95 05 80 B2 00 00 08**

Response: **C0 03 00 90 00 92 01 00 96 02 00 00 97 0C [Card Response] 90 00**

7. End Transparent Session.

Command: **FF C2 00 00 02 82 00**

Response: **C0 03 00 90 00 90 00**

4.3.6. Proprietary Pseudo APDU for PICC

The following Pseudo APDUs are provided as supplement to PCSC Pseudo APDUs to access a contactless card indirectly. The internally handling of these APDU is similar to PCSC Pseudo APDUs.

4.3.6.1. Write Value Block [FF D7 ...]

This command is used to write a 4-byte value to a block in a card compatible with MIFARE Standard. User should perform succeed authentication to get the access right of the block before sending this command.

Command

Command	Class	INS	P1	P2	Lc	Data In
Write Value Block	FFh	D7h	00h	Block Number	05h	See below

Command Data

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4
00h	4 Bytes Value with MSB first			

Example 1: Decimal -4 = {FFh, FFh, FFh, FCh}

VB_Value			
MSB			LSB
FFh	FFh	FFh	FCh

Example 2: Decimal 1 = {00h, 00h, 00h, 01h}

VB_Value			
MSB			LSB
00h	00h	00h	01h

Response Code

Results	SW1 SW2	Meaning
Success	90 00h	The operation was completed successfully.
Error	6X XXh	Fail.

4.3.6.2. Read Value Block [FF B1 ...]

This command is used to read a 4-byte value from a valid value block in a card compatible with MIFARE Standard. User should perform succeed authentication to get the access right of the block before sending this command.

Command

Command	Class	INS	P1	P2	Le
Read Value Block	FFh	B1h	00h	Block Number	04h

Example 1: Decimal $-4 = \{FFh, FFh, FFh, FCh\}$

Value			
MSB			LSB
FFh	FFh	FFh	FCh

Example 2: Decimal $1 = \{00h, 00h, 00h, 01h\}$

Value			
MSB			LSB
00h	00h	00h	01h

Response

Rsp Data	SW1 SW2	Meaning
4 Bytes Value with MSB first	90 00h	Succeed with data.
--	6X XXh	Fail.

4.3.6.3. Decrement/Increment Value [FF D7 ...]

This command is used to decrement/increment a 4-byte value from source block and stores the result to target block in a card compatible with MIFARE Standard. If user wants to store the result to the block same as source block, user can set the target block number equal to 0 or source block number. User should perform succeed authentication to get the access right of both source and target block before sending this command.

Command

Command	Class	INS	P1	P2	Lc	Data In
Decrement/Increment Value	FFh	D7h	Target Block#	Source Block#	05h	See below

Command Data

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4
01h	4 Bytes Increment Value with MSB first			
02h	4 Bytes Decrement Value with MSB first			

Response Code

Results	SW1 SW2	Meaning
Success	90 00h	The operation was completed successfully.
Error	6X XXh	Fail.

4.3.6.4. Copy Value Block [FF D7 ...]

This command is used to copy the value from source block to target block in a card compatible with MIFARE Standard. User should perform succeed authentication to get the access right of both source and target block before sending this command.

Command

Command	Class	INS	P1	P2	Lc	Data In
Copy Value Block	FFh	D7h	00	Source Block#	02h	See below

Command Data

Byte 0	Byte 1
03h	Target Block#

Response Code

Results	SW1 SW2	Meaning
Success	90 00h	The operation was completed successfully.
Error	6X XXh	Fail.

4.3.7. Accessing PCSC-Compliant tags (ISO14443-4)

All ISO 14443-4 compliant cards (PICCs) understand the ISO 7816-4 APDUs. The ACM1552D-C7 reader just has to communicate with the ISO 14443-4 compliant cards by exchanging ISO 7816-4 APDUs and responses. The ACM1552D-C7 will handle the ISO 14443 Parts 1-4 Protocols internally.

MIFARE Classic (1K/4K), MIFARE Mini and MIFARE Ultralight tags are supported through the T=CL emulation. Just simply treat the MIFARE tags as standard ISO 14443-4 tags. For more information, please refer to [PCSC Pseudo APDU \(with Proprietary Extension\) for PICC](#).

ISO 7816-4 APDU Format

Command	Class	INS	P1	P2	Lc	Data In	Le
ISO 7816 Part 4 Command					Length of the Data In		Expected length of the Response Data

ISO 7816-4 Response Format (Data + 2 bytes)

Response	Data Out			
Result	Response Data		SW1	SW2

Common ISO 7816-4 Response Codes

Results	SW1 SW2	Meaning
Success	90 00h	The operation was completed successfully.
Error	63 00h	The operation failed.

Typical sequence may be:

1. Present the tag and connect the PICC Interface.
2. Read/Update the memory of the tag.

To do this:

1. Connect the tag.

The ATR of the tag is 3B 88 80 01 00 00 00 00 33 81 81 00 3Ah.

In which,

The Application Data of ATQB = 00 00 00 00, protocol information of ATQB = 33 81 81. It is an ISO 14443-4 Type B tag.

2. Send an APDU, Get Challenge.

<< 00 84 00 00 08h

>> 1A F7 F3 1B CD 2B A9 58h [90 00h]

Note: For ISO 14443-4 Type A tags, the ATS can be obtained by using the APDU "FF CA 01 00 00h."

Example:

// Read 8 bytes from an ISO 14443-4 Type B PICC (ST19XR08E)

APDU = {80 B2 80 00 08h}

Class = 80h

INS = B2h

P1 = 80h

P2 = 00h

Lc = None

Data In = None

Le = 08h

Answer: 00 01 02 03 04 05 06 07h [\$9000h]

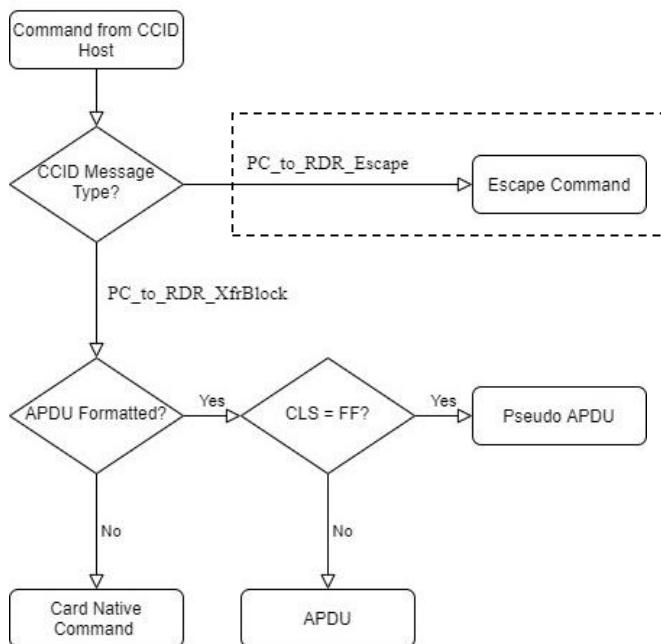
4.3.9. Supported PICC ATR

The following PICC type/technology are supported by default. The following ATR is returned to CCID Host on SCardStatus() in PCSC API in USB interface or PC_to_RDR_IccPowerOn Command in serial interface if the card is presented to the reader.

Card Type/Technology	ATR
MIFARE Std 1k ²	3B 8F 80 01 80 4F 0C A0 00 00 03 06 03 00 01 00 00 00 00 6A
MIFARE Std 4k ²	3B 8F 80 01 80 4F 0C A0 00 00 03 06 03 00 02 00 00 00 00 69
MIFARE Ultralight ²	3B 8F 80 01 80 4F 0C A0 00 00 03 06 03 00 03 00 00 00 00 68
MIFARE Ultralight EV1 ²	3B 8F 80 01 80 4F 0C A0 00 00 03 06 03 00 3D 00 00 00 00 56
MIFARE Plus SL1 2k ²	Default: Same as MIFARE Std 1k Alternated: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 03 00 36 00 00 00 00 5D
MIFARE Plus SL1 4k ²	Default: Same as MIFARE Std 4k Alternated: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 03 00 37 00 00 00 00 5C
MIFARE Plus SL2 2k	3B 8F 80 01 80 4F 0C A0 00 00 03 06 03 00 38 00 00 00 00 53
MIFARE Plus SL2 4k	3B 8F 80 01 80 4F 0C A0 00 00 03 06 03 00 39 00 00 00 00 52
MIFARE Ultralight C ²	Default: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 03 00 3A 00 00 00 00 51 Alternated: Same as MIFARE Ultralight
SmartMX with MIFARE Std 1k Emulation ²	Default: Same as MIFARE Std 1k Alternated: Same as ISO14443-4, Type A
SmartMX with MIFARE Std 4k Emulation ²	Default: Same as MIFARE Std 4k Alternated: Same as ISO14443-4, Type A
ISO14443-4, Type A	3B 8n 80 01 T1 .. Tn Tck n = Number of Historical bytes in ATS T1 .. Tn = Historical bytes in ATS Tck = XOR of 8n 80 01 T1 .. Tn
ISO14443-4, Type B	3B 88 80 01 T1 .. T8 Tck T1 .. T4 = Application Data in ATQB T5 .. T7 = Protocol Info in ATQB T8 = MBLI in ATA Tck = XOR of 88 80 01 T1 .. T8
FeliCa	3B 8F 80 01 80 4F 0C A0 00 00 03 06 11 00 3B 00 00 00 00 42
ISO15693-3 Generic	3B 8F 80 01 80 4F 0C A0 00 00 03 06 0B 00 00 00 00 00 63
Infineon My-D Vicinity (SRF55Vxxx)	3B 8F 80 01 80 4F 0C A0 00 00 03 06 0B 00 0E 00 00 00 00 6D
ST LRI	3B 8F 80 01 80 4F 0C A0 00 00 03 06 0B 00 13 00 00 00 00 70
NXP I-Code SLI	3B 8F 80 01 80 4F 0C A0 00 00 03 06 0B 00 14 00 00 00 00 77

² Refer to “Bit 3” and “Bit 7” in Set Polling/ATR Option [E0 00 00 23 01 ...] Escape command for configuration and drawback of the alternated ATR definition.

Card Type/Technology	ATR
NXP I-Code SLIX/SLIX2	3B 8F 80 01 80 4F 0C A0 00 00 03 06 0B 00 35 00 00 00 00 56
PicoPass 2K	ISO14443B: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 06 00 17 00 00 00 00 79
PicoPass 2KS	ISO14443B: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 06 00 18 00 00 00 00 76
PicoPass 16K	ISO14443B: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 06 00 19 00 00 00 00 77
PicoPass 16KS	ISO14443B: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 06 00 1A 00 00 00 00 74
PicoPass 16K (8 x 2)	ISO14443B: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 06 00 1B 00 00 00 00 75
PicoPass 16KS (8 x 2)	ISO14443B: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 06 00 1C 00 00 00 00 72
PicoPass 32KS (16 + 16)	ISO14443B: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 06 00 1D 00 00 00 00 73
PicoPass 32KS (16 + 8x2)	ISO14443B: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 06 00 1E 00 00 00 00 70
PicoPass 32KS (8x2 + 16)	ISO14443B: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 06 00 1F 00 00 00 00 71
PicoPass 32KS (8x2 + 8x2)	ISO14443B: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 06 00 20 00 00 00 00 4E



In order to reduce response time for generic application, the support of following PICC type/technology are disabled by default. User could enable the support of each Type/Technology by “Set PICC Polling Type” Escape command. The following ATR is returned to CCID Host on PC_to_RDR_IccPowerOn Command in serial interface or SCardStatus() in USB interface if the card is presented to the reader and the corresponding Type/Technology is enabled.

Card Type/Technology	ATR
SRI (SRIX4K/SRT512)	3B 8F 80 01 80 4F 0C A0 00 00 03 06 06 00 07 00 00 00 00 69
Topaz	3B 8F 80 01 80 4F 0C A0 00 00 03 06 02 00 30 00 00 00 00 5A
PicoPass 2K	ISO15693: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 0A 00 17 00 00 00 00 75
PicoPass 2KS	ISO15693: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 0A 00 18 00 00 00 00 7A
PicoPass 16K	ISO15693: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 0A 00 19 00 00 00 00 7B
PicoPass 16KS	ISO15693: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 0A 00 1A 00 00 00 00 78
PicoPass 16K (8 x 2)	ISO15693: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 0A 00 1B 00 00 00 00 79
PicoPass 16KS (8 x 2)	ISO15693: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 0A 00 1C 00 00 00 00 7E
PicoPass 32KS (16 + 16)	ISO15693: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 0A 00 1D 00 00 00 00 7F
PicoPass 32KS (16 + 8x2)	ISO15693: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 0A 00 1E 00 00 00 00 7C
PicoPass 32KS (8x2 + 16)	ISO15693: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 0A 00 1F 00 00 00 00 7D
PicoPass 32KS (8x2 + 8x2)	ISO15693: 3B 8F 80 01 80 4F 0C A0 00 00 03 06 0A 00 20 00 00 00 00 42
Innovatron	3B 88 80 01 80 4F 05 F0 49 4E 4E 4F 35
CTS	3B 87 80 01 80 4F 04 F0 43 54 53 79

5.0. Escape Command

The following commands are provided to configure PCD/NFC and to access special function of the reader. CCID Host could send these commands to reader by using CCID Message PC_to_RDR_Escape in serial interface or SCardControl() with SCARD_CTL_CODE(3500) in USB interface. After receiving of an Escape Command, it will be interpreted to perform various operations and then generate a response to send back to CCID Host.

Note:

Should send these commands under correct interface. For example, E0 00 00 25 01 00 (Section 5.1.1) should send through PICC interface (Section 5.0).

5.1. Escape Command for PICC

5.1.1. RF Control [E0 00 00 25 01 ...]

This command is used to set the RF control.

Command

Command	Class	INS	P1	P2	Lc	Data Out
RF Control	E0h	00h	00h	25h	01h	RF status

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	01h	RF status

RF Status: 1 Byte

RF status	Description
00h	RF Off
01h	RF On, with Polling
02h	RF On, without Polling

Default Setting – 01h (RF On, with Polling)

5.1.2. Get PCD/PICC Status [E0 00 00 25 00]

This command is used to get the PCD/PICC status

Command

Command	Class	INS	P1	P2	Le
Get PCD/PICC Status	E0h	00h	00h	25h	00h

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	01h	Get PCD/PICC Status

PCD/PICC Status: 1 Byte

RF status	Description
00h	RF Off
01h	No PICC
02h	PICC Ready
03h	PICC Selected/Activated
FFh	Error

5.1.3. Get Polling/ATR Option [E0 00 00 23 00]

This command is used to set/get the Polling Option but save the setting without another command. This command should only be used for initial reader configuration.

Command

Command	Class	INS	P1	P2	Le
Get Polling/ATR Option	E0h	00h	00h	23h	00h

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	01h	PICC Polling/ATR Option

5.1.4. Set Polling/ATR Option [E0 00 00 23 01 ...]

This command is used to set the polling option.

Command

Command	Class	INS	P1	P2	Lc	Data Out
Set Polling/ATR Option	E0h	00h	00h	23h	01h	PICC Polling/ATR Option

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	01h	PICC Polling/ATR Option

PICC Polling/ATR Option - 1 Byte

Operating Parameter	Parameter	Description	Option
Bit 0	Enable Polling	The Tag Types to be detected during PICC Polling.	1 = Detect 0 = Skip
Bit 1	Enable RF Off Interval		
Bit 2		RFU	
Bit 3	Enable extra MIFARE type identification for Part 3 card in ATR	The Tag Types to be detected during PICC Polling.	1 = Detect 0 = Skip

Operating Parameter	Parameter	Description	Option
Bit 4 ~ 5	RF Off Interval		See below
Bit 6	RFU		
Bit 7	Enable Part 4 ATR for SmartMX/JCOS card with MIFARE emulation	The Tag Types to be detected during PICC Polling.	1 = Detect 0 = Skip

RF Off Interval – 2 Bit

Case 1: Disabled RF Off (Bit 1 = 0)

Operating Parameter		USB Active (D0)
Bit 5	Bit 4	
0	0	No RF Off
0	1	
1	0	
1	1	

Case 2: Enabled RF Off (Bit 1 = 1)

Operating Parameter		USB Active (D0)
Bit 5	Bit 4	
0	0	250 ms
0	1	500 ms
1	0	1000 ms
1	1	2500 ms

Default Setting – 8Bh (Enabled Polling, Enabled RF Off Interval, Enabled extra MIFARE type identification for Part 3 card in ATR, RF Off Interval[00], Enabled Part 4 ATR for SmartMX/JCOS card with MIFARE emulation)

5.1.5. Get PICC Polling Type [E0 00 01 20 00]

This command is used to get the allowed Technology/Polling Type but save the setting without another command. This command should only be used for initial reader configuration.

Command

Command	Class	INS	P1	P2	Le
Get PICC Polling Type	E0h	00h	01h	20h	00h

Response Code

Response	Class	INS	P1	P2	Le	Data In	
						Byte 1	Byte 0
Result	E1h	00h	00h	00h	02h	PICC Polling Type	

5.1.6. Set PICC Polling Type [E0 00 01 20 02 ...]

This command is used to set the PICC polling type.

Command

Command	Class	INS	P1	P2	Lc	Data Out	
						Byte 1	Byte 0
Set PICC Polling Type	E0h	00h	01h	20h	02h	PICC Polling Type	

Response Code

Response	Class	INS	P1	P2	Le	Data In	
						Byte 1	Byte 0
Result	E1h	00h	00h	00h	02h	PICC Polling Type	

PICC Polling Type - 2 Byte, Bit Mask of following

Bytes	Operating Parameter	Parameter	Description	Option
Byte 1	Bit 0	ISO 14443A	The Tag Types to be detected during PICC Polling. RFU bit should be set to 0.	1 = Detect 0 = Skip
	Bit 1	ISO 14443B		
	Bit 2	FeliCa		
	Bit 3	RFU		
	Bit 4	Topaz		
	Bit 5	Innovatron		
	Bit 6	SRI/SRIX		
	Bit 7	RFU		
Byte 0	Bit 0	Picopass (ISO14443B)		
	Bit 1	Picopass (ISO15693)		
	Bit 2	ISO15693		
	Bit 3	CTS		
	Bit 4-7	RFU		

Default Setting – Byte 1: 07h (ISO14443A, ISO14443B, FeliCa)

Byte 0: 05h (Picopass (ISO14443B), ISO15693)

Example:

Command: E0 00 01 20 02 07 05

Response: E1 00 00 00 02 07 05

Polling Type: Byte 1 = 07h = 0000 0111b = ISO14443A, ISO14443B, FeliCa

Byte 0 = 05h = 0000 0101b = Picopass (ISO14443B), ISO15693

5.1.7. Get Auto PPS [E0 00 00 24 00]

Whenever a PICC is recognized, the reader will try to change the communication speed between the PCD and PICC as defined by the maximum connection speed. If the card does not support the proposed connection speed, the reader will try to connect the card with a slower speed setting.

Command

Command	Class	INS	P1	P2	Le
Get Auto PPS	E0h	00h	00h	24h	00h

Response Code

Response	Class	INS	P1	P2	Le	Data In	
Result	E1h	00h	00h	00h	02h	Max Speed	Current Speed

5.1.8. Set Auto PPS [E0 00 00 24 01 ...]

This command is used to set the auto PPS.

Command

Command	Class	INS	P1	P2	Lc	Data Out
Set Auto PPS	E0h	00h	00h	24h	01h	Max Speed

Response Code

Response	Class	INS	P1	P2	Le	Data In	
Result	E1h	00h	00h	00h	02h	Max Speed	Current Speed

Speed of PPS

Speed	Description
00h	106 kbps; equal to No Auto PPS
01h	212 kbps
02h	424 kbps
03h	848 kbps

Default Setting – 02h (424 kbps)

Notes:

1. Normally, the application should know the maximum connection speed of the PICCs being used. The environment also affects the maximum achievable speed. The reader just uses the proposed communication speed to talk with the PICC. The PICC will become inaccessible if the PICC or environment does not meet the requirement of the proposed communication speed.
2. If the higher speed setting affects the performance of the reader, please switch back to a lower speed setting.

5.1.9. Read PICC Type [E0 00 00 35 00]

This command is used to read the PICC type.

command

Command	Class	INS	P1	P2	Le
Get PICC Type	E0h	00h	00h	35h	00h

Response Code

Response	Class	INS	P1	P2	Le	Data In	
Result	E1h	00h	00h	00h	02h	Type	Status

Type: 1 Byte

Type	Description
CCh	No PICC
04h	Topaz
10h	MIFARE
11h	FeliCa
20h	Type A, Part 4
23h	Type B, Part 4
25h	Innovatron
28h	SRIX
30h	PicoPass
FFh	Other

Status: 1 Byte

Status	Description
00h	RF Off
01h	No PICC
02h	PICC Ready
03h	PICC Selected/Activated
FFh	Error

5.1.10. Get RF Power Setting [E0 00 00 50 00]

This command is used to read the RF Power Setting.

Command

Command	Class	INS	P1	P2	Le
Get RF Power Setting	E0h	00h	00h	50h	00h

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	01h	RF Power

5.1.11. Set RF Power Setting [E0 00 00 50 01 ...]

This command is used to set the PICC polling type, the firmware requirement is the same as Get RF Power Setting.

Command

Command	Class	INS	P1	P2	Lc	Data Out
Set RF Power Setting	E0h	00h	01h	50	01h	RF Power

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	01h	RF Power

Percentage mode

RF Power - 1 Byte

Parameter	Description
00h	Disable manual RF Power setting
01h	20%
02h	40%
03h	60%
04h	80%
05h	100%

Default Setting – 00h

* RF Power value in Percentage mode may not have effective due to hardware limitation.

5.1.12. Get Selective Suspend Setting [E0 00 00 E5 00]

This command is used to read the selective suspend setting.

Command

Command	Class	INS	P1	P2	Lc
Get Selective Suspend Setting	E0h	00h	00h	E5h	00h

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	01h	Selective Suspend

5.1.13. Set Selective Suspend Setting [E0 00 00 E5 01 ...]

This command is used to set the selective suspend setting, the firmware requirement is as same as Get Selective Suspend Setting.

Notice: Selective suspend can not be enable while the reader is in keyboard emulation mode and vice versa.

Command

Command	Class	INS	P1	P2	Lc	Data Out
Set Selective Suspend Setting	E0h	00h	00h	E5h	01h	Selective Suspend

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	01h	Selective Suspend

Selective Suspend - 1 Byte

Parameter	Description
00h	Disable
01h	Enable

Default Setting – 00h

5.1.14. Escape Command for PICC – HID Keyboard (USB Interface Only)

5.1.14.1. Get Output Format [E0 00 00 90 00]

This command is used to get output format.

Command

Command	Class	INS	P1	P2	Le
Get Output Format	E0h	00h	00h	90h	00h

Response Code

Response	Class	INS	P1	P2	Le	Data In	
Result	E1h	00h	00h	00h	02h	Output Format	Output Order

5.1.14.2. Set Output Format [E0 00 00 90 02 ...]

This command is used to set output format.

Command

Command	Class	INS	P1	P2	Lc	Data Out	
Set Output Format	E0h	00h	00h	90h	02h	Output Format	Output Order

Response Code

Response	Class	INS	P1	P2	Le	Data In	
Result	E1h	00h	00h	00h	02h	Output Format	Output Order

Output Format: 1 Byte

Operating Parameter	Parameter	Description	Option
Bit 7 ~ 4	Letter Case	The Tag Types to be detected during PICC Polling.	1 = Detect 0 = Skip
Bit 3 ~ 0	Display Mode		

Output Order: 1 Byte

Status	Description
00h	Default order (UID Byte 0, UID Byte 1 ... UID Byte N) Example: aa cc bb dd (original /actual UID order)
01h	Reverse order (UID Byte N, UID Byte N-1 ... UID Byte 0) Example: dd bb cc aa (reverse the UID order)

Letter Case: Upper 4 Bits (Bit 7 ~ 4)

Status (From bit 7~4)	Description (Don't care about x bit)
1xxx	Reserved
00x0	Lowercase
00x1	Uppercase
000x	Only Support 4 bytes UID
001x	Support 4, 7, 8, 10 bytes UID

Display Mode: Lower 4 Bits (Bit 3 ~ 0)

Status (From bit 7~4)	Description (Don't care about x bit)
0h	Hex
1h	Dec (byte by byte)
2h	Dec
3h	6H-6H
4h	8H-8H
5h	10H-10H
6h	14H-14H
7h	20H-20H
8h	6H-8D
9h	6H-10D
Ah	8H-10D
Bh	10H-14D
Ch	2H4H-8D
Dh	14H-17D

5.1.14.3. Get Character at Start, Between, at End UID [E0 00 00 91 00]

This command is used to get character at Start, Between, End UID.

Command

Command	Class	INS	P1	P2	Le
Get Character of UID	E0h	00h	00h	91h	00h

Response Code

Response	Class	INS	P1	P2	Le	Data In		
Result	E1h	00h	00h	00h	03h	Between	End	Start

5.1.14.4. Set Character at Start, Between, at End UID [E0 00 00 91 03 ...]

This command is used to set character at Start, Between, End UID.

Command

Command	Class	INS	P1	P2	Lc	Data Out		
Set Character of UID	E0h	00h	00h	91h	03h	Between	End	Start

Response Code

Response	Class	INS	P1	P2	Le	Data In		
Result	E1h	00h	00h	00h	03h	Between	End	Start

Between: 1 Byte (The character between each UID)

Status	Description
FFh	No character in between
Other	Refer to Universal Serial Bus (USB) HID Usage Tables

End: 1 Byte (The character at the end of output)

Status	Description
FFh	No character in between
Other	Refer to Universal Serial Bus (USB) HID Usage Tables

Start: 1 Byte (The character at the start of output)

Status	Description
FFh	No character in between
Other	Refer to Universal Serial Bus (USB) HID Usage Tables

Notes:

1. only the characters “,” “,” “,” “,” “-“ are supported in the AZERTY keyboard layout for the characters in between. Zero (0) and Backspace are NOT supported.

5.1.14.5. Get Keyboard Layout Language [E0 00 00 92 00]

This command is used to get keyboard layout language.

Command

Command	Class	INS	P1	P2	Le
Get Keyboard Layout Language	E0h	00h	00h	92h	00h

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	01h	Keyboard Layout Language

5.1.14.6. Set Keyboard Layout Language [E0 00 00 92 01 ...]

This command is used to set keyboard layout language.

Command

Command	Class	INS	P1	P2	Lc	Data Out
Set Keyboard Layout Language	E0h	00h	00h	92h	01h	Keyboard Layout Language

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	01h	Keyboard Layout Language

Keyboard Layout Language: 1 Byte

Status		Description			
00h		English			
01h		French			
02h		Reserved			
03h		Lithuanian			

Default Setting – 00h (English)

5.1.14.7. Get Host Interface [E0 00 00 93 00]

This command is used to get host interface

Command

Command	Class	INS	P1	P2	Le
Get Host Interface	E0h	00h	00h	93h	00h

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	01h	Host Interface

5.1.14.8. Set Host Interface [E0 00 00 93 01 ...]

This command is used to set host interface command

Command	Class	INS	P1	P2	Lc	Data Out
Set Host Interface	E0h	00h	00h	93h	01h	Host Interface

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	01h	Host Interface

Host Interface: 1 Byte

Status	Description
00h	Only HID Keyboard
01h	Only CCID Reader
02h	HID Keyboard + CCID Reader

Default Setting – 01h (Only CCID Reader)

5.1.15. Escape Command for PICC – Card Emulation

5.1.15.1. Enter Card Emulation Mode [E0 00 00 40 03 ...]

This command is used to set the reader into card emulation mode in order to emulate a NFC Forum Type 2 Tag or a FeliCa Card.

Note: Lock byte is not supported in emulated NFC Forum Type 2 Tag. UID is user programmable.

Command

Command	Class	INS	P1	P2	Lc	Data Out		
Enter Card Emulation Mode	E0h	00h	00h	40h	03h	NFC Mode	00h	00h

Response Code

Response	Class	INS	P1	P2	Le	Data In		
Result	E1h	00h	00h	00h	03h	NFC Mode		

NFC Device Mode: 3 Byte

Status	Description
02h	NFC Forum Type 2 Tag Mode
03h	FeliCa
Other	Card Read/Write Mode

Note: Please enter to Card Read/Write mode before switching to different card emulation mode. The response will be showed after the Card Emulation Mode initial is done.

Byte Number	0	1	2	3	Byte Address access by USB
Serial Number	SN0	SN1	SN2	SN3	Nil
Reserved	Reserved	Reserved	Reserved	Reserved	Nil
Internal/Lock	Reserved	Internal	Lock0	Lock1	Nil
Data read/write	Data0	Data1	Data2	Data3	0-3
Data read/write	Data4	Data5	Data6	Data7	4-7
Data read/write	Data8	Data9	Data10	Data11	8-11
Data read/write	Data12	Data13	Data14	Data15	12-15
Data read/write	Data16	Data17	Data18	Data19	16-19
Data read/write	Data20	Data21	Data22	Data23	20-23
Data read/write	Data24	Data25	Data26	Data27	24-27
Data read/write	Data28	Data29	Data30	Data31	28-31
Data read/write	Data32	Data33	Data34	Data35	32-35
Data read/write	Data36	Data37	Data38	Data39	36-39
Data read/write	Data40	Data41	Data42	Data43	40-43
Data read/write	Data44	Data45	Data46	Data47	44-47
Data read/write	Data48	Data49	Data50	Data51	48-51
Data read/write	Data52	Data53	Data54	Data55	52-55
Data read/write	
Data read/write	Data1984	Data1985	Data1986	Data1987	1984~1987

Accessible area (1988 bytes)

Table 7: NFC Forum Type 2 Tag Memory Map (2000 bytes)

Memory	1 Block data (16 Byte)	Byte Address access by USB
Data read/write	Block 0	0-15
Data read/write	Block 1	16-31
Data read/write	Block 2	32-47
Data read/write	Block 3	48-63
Data read/write	Block 4	64-79
Data read/write	Block 5	80-95
Data read/write	Block 6	96-111
Data read/write	Block 7	112-127
Data read/write	Block 8	128-143
Data read/write	Block 9	144-159

Table 8: FeliCa Memory Map (160 bytes)

Where:

Default: Block 0 data: {10h, 01h, 01h, 00h, 09h, 00h, 00h, 00h, 00h, 00h, 01h, 00h, 00h, 00h, 00h, 1Ch}

Default Block 0 data NFC Type3 Tag Attribute Information Block

Notes:

1. FeliCa card emulation support Read/Write without Encryption
2. FeliCa Card Identification Number in IDm is user programmable while Manufacturer Code is fixed at (03 88).

5.1.15.2. Read Card Emulation Data (NFC Forum Type 2 Tag) [E0 00 00 60 04 ...]

This command is used to read the emulated card content.

Command

Command	Class	INS	P1	P2	Lc	Data In			
Read Card Emulation Data	E0h	00h	00h	60h	04h	00h	NFC Mode	Start Offset	Length

Response Code

Response	Class	INS	P1	P2	Le	Data In			
Result	E1h	00h	00h	00h	Length	Data			

Start Offset: 1 Byte – Address start from Data0 in [Table 7](#)

Length: 1 Byte – No. of byte

5.1.15.3. Write Card Emulation Data (NFC Forum Type 2 Tag) [E0 00 00 60 ...]

This command is used to write the emulated card content.

Command

Command	Class	INS	P1	P2	Lc	Data In				
Write Card Emulation Data	E0h	00h	00h	60h	Length + 04h	01h	NFC Mode	Start Offset	Length	Data

Response Code

Response	Class	INS	P1	P2	Le	Data In			
Result	E1h	00h	00h	00h	03h	Length	90h	00h	00h

NFC Device Mode: 1 Byte

Status				Description					
02h				NFC Forum Type 2 Tag Mode					
03h				FeliCa					
Other				Card Read/Write Mode					

Start Offset: 1 Byte – Address start from Data0 in [Table 7](#)

Length: 1 Byte – No. of byte

5.1.15.4. Read Card Emulation Data (NFC Forum Type 2 Tag) (Extended)

This command is used to read the emulated card content.

Command

Command	Class	INS	P1	P2	Lc		Data In			
Read Card Emulation Data	E0h	00h	01h	60h	05h	00h	NFC Mode	Start Offset Bit[15:8]	Start Offset Bit[7:0]	Length

Response Code

Response	Class	INS	P1	P2	Le	Data In			
Result	E1h	00h	00h	00h	Length	Data			

Start Offset: 2 Byte – Address start to read from SN0 in [Table 7](#)

Length: 1 Byte – No. of byte to read

5.1.15.5. Write Card Emulation Data (NFC Forum Type 2 Tag) (Extended)

This command is used to write the emulated card content.

Command

Command	Class	INS	P1	P2	Lc		Data In				
Write Card Emulation Data	E0h	00h	01h	60h	Length + 05h	01h	NFC Mode	Start Offset Bit[15:8]	Start Offset Bit[7:0]	Length	Data

Response Code

Response	Class	INS	P1	P2	Le	Data In					
Result	E1h	00h	00h	00h	03h	Length				90h	00h

NFC Device Mode: 1 Byte

Status				Description					
02h				NFC Forum Type 2 Tag Mode					
Other				Card Read/Write Mode					

Start Offset: 2 Byte – Address start to write from SN0 in [Table 7](#)

Length: 1 Byte – No. of byte to write

5.1.15.6. Set Card Emulation of NFC Forum Type 2 Tag ID [E0 00 00 61 03 ...]

This command sets the UID of the emulated NFC Forum Type 2 Tag.

Command

Command			Class	INS	P1	P2	Lc	Data In		
Set Card Emulation of NFC Forum Type 2 Tag ID			E0h	00h	00h	61h	03h	3 bytes UID		

Response Code

Response	Class	INS	P1	P2	Le	Data In				
Result	E1h	00h	00h	00h	02h	90h				00h

5.1.15.7. Set Card Emulation Lock Data in NFC [E0 00 00 65 01 ...]

This command sets the lock for card emulation data in NFC communication. If the data is locked, it is protected from being overwritten via NFC.

Command

Command	Class	INS	P1	P2	Lc	Data In
Set Card Emulation Lock Data	E0h	00h	00h	65h	01h	Lock

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	01h	Lock

Lock: 1 Byte – Protect the data from being overwritten via NFC

Operating Parameter	Parameter	Description	Option
Bit 7 ~ 2	Reserved	Reserved	
Bit 1	FeliCa Lock Enable	Data cannot be modified via NFC. The data can still be modified by using the USB escape command.	0: Lock disable 1: Lock enable
Bit 0	NFC Forum Type 2 Tag Enable		

5.1.15.8. Set Card Emulation FeliCa IDm [E0 00 00 64 06 ...]

This command sets the 6-byte FeliCa Card Identification number on emulated FeliCa card.

Command

Command	Class	INS	P1	P2	Lc	Data In
Set Card Emulation FeliCa IDm	E0h	00h	00h	64h	06h	IDm

Response Code

Response	Class	INS	P1	P2	Le	Data Out
Result	E1h	00h	00h	00h	06h	IDm

Where:

IDm 6 bytes.

5.1.15.9. Get Card Emulation Status [E0 00 00 69 00]

This command is used to get the status of card emulation data in NFC communication.

Command

Command	Class	INS	P1	P2	Lc
Get Card Emulation Status	E0h	00h	00h	69h	00h

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	01h	Status

Status: 1 Byte

Operating Parameter	Mode	Description
Bit 7 ~ 6	Reserved	Reserved
Bit 5	EmulatedCard is activated	1 = Activated
Bit 4	EmulatedCard is removed	1 = Card is removed
Bit 3	EmulatedCard is read all	1 = All data is read
Bit 2	EmulatedCard is read	1 = Data is read
Bit 1	EmulatedCard is written	1 = Data is written
Bit 0	EmulatedCard is detected	1 = Card is detecting

5.1.15.10. Example Command Set of Emulating NFC Forum Type 2 Tag Mode

The command set is to trigger ACS website <https://www.acs.com.hk> by using ACM1552D-C7 to emulate as the NFC forum type 2 tag mode. The steps are showed below:

1. Enter the card emulation mode with below command:

- Send Enter Card Emulation Mode

E0 00 00 40 03 02 00 00

2. Write the NDEF data with below command:

- Send Write Card Emulation Data (NFC Forum Type 2 Tag)

E0 00 00 60 1A 01 02 00 16 E1 10 F4 00 03 0F D1 01 0B 55 02 61 63 73 2E 63 6F 6D 2E 68 6B FE

The command set is to trigger an sample long URL website

<https://www.example.com/this/is/a/very/long/url/that/keeps/going/on/and/on/with/even/more/segments/added/to/make/sure/it/exceeds/the/typical/length/limit/of/260/bytes/which/is/surprisingly/easy/to/do/if/you/keep/adding/more/and/more/segments/like/this/one/and/even/more>

by using ACM1552D-C7 to emulate as the NFC forum type 2 tag mode. The steps are showed below:

1. Enter the card emulation mode with below command:

- Send Enter Card Emulation Mode

E0 00 00 40 03 02 00 00

2. Write the NDEF data with below command:

- Send Write Card Emulation Data (NFC Forum Type 2 Tag). Since the length of the NDEF message is longer than 256 bytes, it needs to be split into two parts to send to the NFC Forum Type 2 Tag.

E0 00 00 60 AC 01 02 00 A8 E1 10 F4 00 03 FF 01 09 C1 01 00 00 01 02 55 02 65 78
61 6D 70 6C 65 2E 63 6F 6D 2F 74 68 69 73 2F 69 73 2F 61 2F 76 65 72 79 2F 6C 6F
6E 67 2F 75 72 6C 2F 74 68 61 74 2F 6B 65 65 70 73 2F 67 6F 69 6E 67 2F 6F 6E 2F
61 6E 64 2F 6F 6E 2F 77 69 74 68 2F 65 76 65 6E 2F 6D 6F 72 65 2F 73 65 67 6D 65
6E 74 73 2F 61 64 64 65 64 2F 74 6F 2F 6D 61 6B 65 2F 73 75 72 65 2F 69 74 2F 65
78 63 65 65 64 73 2F 74 68 65 2F 74 79 70 69 63 61 6C 2F 6C 65 6E 67 74 68 2F 6C
69 6D 69 74 2F 6F 66 2F 32 36 30 2F 62 79 74

E0 00 00 60 6E 01 02 A8 6A 65 73 2F 77 68 69 63 68 2F 69 73 2F 73 75 72 70 72 69
73 69 6E 67 6C 79 2F 65 61 73 79 2F 74 6F 2F 64 6F 2F 69 66 2F 79 6F 75 2F 6B 65
65 70 2F 61 64 64 69 6E 67 2F 6D 6F 72 65 2F 61 6E 64 2F 6D 6F 72 65 2F 73 65 67
6D 65 6E 74 73 2F 6C 69 6B 65 2F 74 68 69 73 2F 6F 6E 65 2F 61 6E 64 2F 65 76 65
6E 2F 6D 6F 72 65 FE

Notes:

For more detailed information and specifications related to the NDEF (NFC Data Exchange Format), I would recommend referring to the NDEF specification. It provides comprehensive guidelines and details about the structure and usage of NDEF records, which are commonly used in NFC data exchange. The NDEF specification will provide a deeper understanding of how to interpret and utilize the NDEF command and data in the context of the ACM1552D-C7 device.

5.1.16. Escape Command for PICC – Discovery Mode

5.1.16.1. Enter Discovery Mode [E0 00 00 6A 01 ...]

This command is used to enter the discovery mode.

Command

Command	Class	INS	P1	P2	Lc	Data Out
Enter Discovery Mode	E0h	00h	00h	6Ah	01h	Discovery Mode

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	01h	Discovery Mode

Discovery Mode: 1 Byte

Status	Description
00h	Card Reader Mode
02h	NFC Forum Type 2 Tag Mode
03h	FeliCa

5.2. Escape Command for Peripheral Control and Other

5.2.1. Get Firmware Version [E0 00 00 18 ...]

This command is used to get reader's firmware message.

Command

Command	Class	INS	P1	P2	Le
Get Firmware Version	E0h	00h	00h	18h	00h

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	Length of Firmware Version	Firmware Version

Example:

Command: E0 00 00 18 00

Response Code: E1 00 00 00 14 41 43 52 31 35 35 32 20 44 20 46 57 20 37 2E 30 30 2E 30 30

Firmware Version in Hex: 41 43 52 31 35 35 32 20 44 20 46 57 20 37 2E 30 30 2E 30 30

Firmware Version in ASCII: ACR1552 D FW 7.00.00

5.2.2. Get Serial Number [E0 00 00 33 00]

This command is used to get the serial number.

Command

Command	Class	INS	P1	P2	Le
Get Serial Number	E0h	00h	00h	33h	00h

Response Code

Response	Class	INS	P1	P2	Le	Data out
Result	E1h	00h	00h	00h	Length of Serial No.	Serial No.

5.2.3. Set S/N in USB Descriptor [E0 00 00 F0]

This command is used to Set S/N in USB Descriptor.

Command

Command	Class	INS	P1	P2	Le	Data In	
Set S/N in USB Descriptor	E0h	00h	00h	F0h	02h	00h	Enable SN in USB Descriptor

Response Code

Response	Class	INS	P1	P2	Le	Data Out		
Result	E1h	00h	00h	00h	03h	Enable SN in USB Descriptor	90h	00h

Enable SN in USB Descriptor (1 byte)

Enable SN in USB Descriptor		Description				
00h		Disable SN in USB Descriptor				
01h		Enable SN in USB Descriptor				

5.2.4. Set Buzzer Control - Single Time [E0 00 00 28 01 ...]

This command is used to set a single buzzer

Command

Command	Class	INS	P1	P2	Lc	Data Out
Buzzer Control	E0h	00h	00h	28h	01h	BUZ Status

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	01h	BUZ Status

Buzzer Status (1 byte)

Buzzer Status		Description				
00h		Off				
01 ~ FFh		On with duration in 10ms unit				

5.2.5. Set Buzzer Control - Repeatable [E0 00 00 28 03 ...]

This command is used to set period of buzzer

Command

Command	Class	INS	P1	P2	Lc	Data Out
Buzzer Control	E0h	00h	00h	28h	03h	BUZ Status

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	03h	BUZ Status

Buzzer Status (3 byte)

Operating Parameter	Buzzer Status	Description
Param 1 – Byte 0	On Time Period	01 ~ FF: On Duration in 10ms unit
Param 2 – Byte 1	Off Time Period	01 ~ FF: Off Duration in 10ms unit

Operating Parameter	Buzzer Status	Description
Param 3 – Byte 2	Time for Repeating	01 ~ FF: Number to Repeat

5.2.6. Get LED Status [E0 00 00 29 00]

This command is used to get the current LED status

Command

Command	Class	INS	P1	P2	Le
Get LED Status	E0h	00h	00h	29h	00h

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	01h	LED Status

5.2.7. Set LED Control [E0 00 00 29 01 ...]

This command is used to set LED control

Command

Command	Class	INS	P1	P2	Lc	Data Out
Set LED Control	E0h	00h	00h	29h	01h	LED Status

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	01h	LED Status

LED Status (1 byte)

LED Status	Description
Bit 0: Blue LED	1 = On; 0 = Off
Bit 1: Green LED	1 = On; 0 = Off
Bit 2-7: RFU	Other

5.2.8. Get UI Behaviour [E0 00 00 21 00]

This command is used to get the PCD UI Behaviour but save the setting without another command. This command should only be used for initial reader configuration.

Command

Command	Class	INS	P1	P2	Le
Get PICC UI Behaviour	E0h	00h	00h	21h	00h

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	01h	PICC UI Behaviour

5.2.9. Set UI Behaviour [E0 00 00 21 01 ...]

This command is used to set the PICC UI behaviour.

Command

Command	Class	INS	P1	P2	Lc	Data Out
Set PICC UI Behaviour	E0h	00h	00h	21h	01h	PICCUI Behaviour

Response Code

Response	Class	INS	P1	P2	Le	Data In
Result	E1h	00h	00h	00h	01h	PICC UI Behaviour

UI Behaviour - 1 Byte, Bit Mask of following

Operating Parameter	Parameter	Description	Option
Bit 0	Accessing(LED Fast Blinking)	The UI behaviour of the reader	1 = Enable 0 = Disable
Bit 1	PICC Polling Status LED		
Bit 2	PICC Activation Status LED		
Bit 3	Presence Event (Short Buzzer Beep)		
Bit 4	Card Removal Event (Short Buzzer Beep)		

Default Setting For PICC – 0Fh

Notes: The Get/Set UI behaviour are excluding on SAM interface.

5.2.10. Set Serial Communication Mode

This command is used to configure the communication speed and communication mode.

Command

Command	Byte 0	Byte 1
Set Serial Communication Mode	44h	Mode Select

Response Code

Response	Byte 0	Byte 1
Result	90h	Mode Select

Mode Select (1 byte) – Communication Speed and Mode Selection

Offset	Parameter	Description
Bit 0-3	Serial Communication Speed	000b= 9600 bps 001b= 19200 bps 010b= 38400 bps 011b= 57600 bps 100b= 115200 bps(Default) 101b= 128000 bps 110b= 230400 bps Other value reserve for future use.
Bit 4 - 6	RFU	RFU
Bit 7	Interrupt-In Message(CCID-like Format)	1 = Report Interrupt-In Message. 0 = Not report (Default).

Note: After the communication speed is changed successfully, the program has to adjust its communication speed to continue the rest of the data exchanges.

Appendix A. NDEF Message

This section shows how to use NDEF message to encode the URL onto the Ntag.

For the data format, please refer to NFC Forum NFC Data Exchange Format (NDEF) Specifications 1.0.

Example:

NDEF Message = { D1 01 0B 55 02 61 63 73 2E 63 6F 6D 2E 68 6Bh }

Offset	Content	Length	Description
0	D1	1	NDEF header. TNF = 01h, SR=1, MB=1, ME=1
1	01	1	Record name length (1 byte)
2	0B	1	The length of the URI payload (11 bytes)
3	55 (“U”)	1	Record type: “U”
4	02	1	Abbreviation: “https://www.”
5	61 63 73 2E 63 6F 6D 2E 68 6B	10	The URL itself. “acs.com.hk”

Encode to Ntag = {03 0F D1 01 0B 55 01 61 63 73 2E 63 6F 6D 2E 68 6B FEh}

Offset	Content	Length	Description
0	03	1	TLV header. 03h = NDEF message
1	0F	1	The length of the NDEF message (15 byte)
2	D1 01 0B 55 01 61 63 73 2E 63 6F 6D 2E 68 6B	15	NDEF Message
17	FE	1	TLV header. FEh = End of record

Appendix B. Slot Status and Slot Error

Each Bulk-IN Message contains the values of Slot Error and Slot Status registers.

Offset	Field	Size	Value	Description
0	bmICCStatus	2 bits	0, 1, 2	0 - An ICC is present and active (power is on and stable, RST is inactive) 1 - An ICC is present and inactive (not activated or shut down by hardware error) 2 - No ICC is present 3 - RFU
2	bmRFU	4 bits	RFU	Length of the Smart Poster data (15 bytes)
6	bmCommandStatus	2 bits	0, 1, 2	0 - Processed without error 1 - Failed (error code provided by the error register) 2 - Time Extension is requested 3 - RFU

Table 9: Slot Status register

Error Code	Error Name	Possible Causes
FFh	CMD_ABORTED	Host aborted the current activity
FEh	ICC_MUTE	CCID timed out while talking to the ICC
FDh	XFR_PARITY_ERROR	Parity error while talking to the ICC
FCh	XFR_OVERRUN	Overrun error while talking to the ICC
FBh	HW_ERROR	An all inclusive hardware error occurred
F8h	BAD_ATR_TS	
F7h	BAD_ATR_TCK	
F6h	ICC_PROTOCOL_NOT_SUPPORTED	
F5h	ICC_CLASS_NOT_SUPPORTED	
F4h	PROCEDURE_BYTE_CONFLICT	
F3h	DEACTIVATED_PROTOCOL	
F2h	BUSY_WITH_AUTO_SEQUENCE	Automatic Sequence Ongoing
E0h	CMD_SLOT_BUSY	A second command was sent to a slot which was already processing a command.
C0h to 81h	User Defined	
80h and those filling the gaps	RFU	

Error Code	Error Name	Possible Causes
7Fh to 01h	Index of not supported / incorrect message parameter	01h: Bad dwLength 05h: bSlot does not exist 07h: bPowerselect error (not supported) 08h: Bad wLevelParameter 0Ah: FI – DI pair invalid or not supported 0Bh: Invalid TCCKTS parameter 0Ch: Guard time not supported 0Dh: T = 0 WI invalid or not supported T = 1 BWI or CWI invalid or not supported 0Eh: Clock stop support requested invalid or not supported 0Fh: IFSC size invalid or not supported 10h: NAD value invalid or not supported
00h	Command not supported	

Table 10: Slot error register when bmCommandStatus = 1